русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Дробный факторный эксперимент


Дата добавления: 2013-12-23; просмотров: 2205; Нарушение авторских прав


 

С увеличением числа факторов в соответствии с формулой N = 2k количество опытов полного факторного эксперимента резко возрастает. Однако если при получении уравнения можно ограничиться линейным приближением, то число опытов можно значительно уменьшить путем использования дробных реплик от полного факторного эксперимента. Полученный план в этом случае будет называться дробным факторным экспериментом (ДФЭ). Чтобы дробная реплика представляла собой ортогональный план, в качестве реплики следует брать полный факторный эксперимент для меньшего количества факторов. Число опытов при этом должно быть больше или равно числу неизвестных коэффициентов в уравнении регрессии. Допустим, что требуется получить линейное приближение небольшого участка поверхности отклика при трех независимых факторах:

 

= b0 + b1 x1 + b2 x2 + b3 x3 . (6.13)

 

Для решения этой задачи можно ограничиться четырьмя опытами, если в планировании для ПФЭ 22 (табл.6.4) использовать столбец x1x2 в качестве плана для x3 (табл. 6.5).

Сокращенный план (табл. 6.5) называется полурепликой от ПФЭ 23. Пользуясь таким планированием, можно оценить свободный член и коэффициенты уравнения регрессии при линейных членах.

 

Таблица 6.4   Таблица 6.5
ПФЭ 22   Полуреплика от ПФЭ 23
№ оп. x0 x1 x2 x1x2   № оп. x0 x1 x2 x3
+1 +1 +1 +1   +1 +1 +1 +1
+1 –1 –1 +1   +1 –1 –1 +1
+1 –1 +1 –1   +1 –1 +1 –1
+1 +1 –1 –1   +1 +1 –1 –1

 

Однако надо иметь в виду, что использовать столбец x3 вместо столбца x1x2 можно только при равенстве нулю эффектов взаимодействия (в рассматриваемом случае коэффициент b12). На практике не всегда удается установить, равны ли нулю эффекты взаимодействия, но часто имеются основания полагать, что некоторые из них малы по сравнению с линейными эффектами. Если коэффициенты регрессии при парных взаимодействиях не равны нулю, то полученные коэффициенты будут смешанными оценками для генеральных коэффициентов:



b1 ® b1+ b23; b2 ® b2 + b13; b3® b3 + b12, (6.14)

 

где b – математические ожидания для соответствующих коэффициентов.

Эти генеральные коэффициенты не могут быть раздельно оценены по плану, включающему всего четыре опыта, так как при этом столбцы для линейных членов и парных коэффициентов одинаковы. Если, например, в дополнение к столбцам табл. 6.5 вычислить столбец для произведения х1х3, то окажется, что элементы этого столбца в точности равны элементам столбца х2. Таким образом, сокращение числа опытов приводит к получению смешанных оценок для коэффициентов. Чтобы определить, какие генеральные коэффициенты смешаны, удобно пользоваться следующим приемом: поставив х3 на место х1х2 (табл.6.5), получаем соотношение

 

x3 = x1 x2, (6.15)

 

называемое генерирующим соотношением. Умножив обе части генерирующего соотношения на x3, получим единичный столбец

 

= x1 x2 x3 = 1. (6.16)

 

Произведение x1x2x3 называется определяющим контрастом, при его помощи удобно определять, в каких столбцах одинаковые элементы. Умножив поочередно определяющий контраст на x1, x2 и x3, получим

 

х1 = = х2х3; х2 = х1х3; х3 = х1х2. (6.17)

 

При использовании ДФЭ необходимо иметь четкое представление о так называемой разрешающей способности дробной реплики, т.е. определить заранее, какие коэффициенты являются несмешанными оценками для соответствующих генеральных коэффициентов. Тогда в зависимости от поставленной задачи подбирается дробная реплика, при помощи которой можно извлечь максимальную информацию из эксперимента. Необходимо выбирать такие реплики, у которых смешанные коэффициенты минимальны. При этом следует иметь в виду, что в реальных задачах взаимодействия большего порядка бывают равны нулю значительно чаще, чем меньшего, т.е. более вероятно, что нулю равно тройное, а не двойное взаимодействие. Таким образом, заменяя столбцы с минимальными смешанными коэффициентами новыми факторами, мы можем существенно уменьшить количество проводимых опытов при минимальной потере точности модели.




<== предыдущая лекция | следующая лекция ==>
Полный факторный эксперимент (ПФЭ) | Оптимизация эксперимента


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.009 сек.