русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Доверительные интервалы и доверительная вероятность, распределение Стьюдента


Дата добавления: 2013-12-23; просмотров: 3403; Нарушение авторских прав


 

На практике всегда располагают ограниченным числом значений случайной величины, представляющим собой некоторую выборку из генеральной совокупности. Под генеральной совокупностью понимают все допустимые значения случайной величины. Выборка является репрезентативной (представительной), если она дает достаточное представление об особенностях генеральной совокупности. Если о генеральной совокупности ничего не известно, единственной гарантией репрезентативности является случайный отбор. Выборочные параметры являются случайными величинами, их отклонения от генеральных также будут случайными. Оценка этих отклонений носит вероятностный характер, т.е. можно лишь указать вероятность той или иной погрешности. Для этого в математической статистике пользуются доверительными интервалами и доверительными вероятностями. Доверительная вероятность характеризует надежность полученной оценки.

Пусть имеется выборка объема n значений случайной величины. Наилучшей оценкой для mx является среднее выборки :

 

. (5.37)

 

Для выборок из генеральной совокупности, распределенной нормально, можно показать, что также имеет нормальное распределение со средним значением mx и средним квадратическим отклонением,

 

. (5.38)

Тогда доверительный интервал для математического ожидания будет иметь вид

, (5.39)

 

где – квантиль стандартного нормального распределения.

Стандартное нормальное распределение симметрично относительно нуля, поэтому

. (5.40)

 

В случае односторонней оценки математического ожидания, т.е. оценки только сверху или только снизу, квантили берутся для вероятности и соответственно.

Значения квантилей нормального распределения приведены в приложении 1. Определить доверительный интервал описанным выше способом можно только в том случае, если известна генеральная дисперсия sх2. Получить генеральную дисперсию из наблюдений нельзя, ее можно только оценить при помощи выборочной дисперсии . Ошибка от замены генеральной дисперсии выборочной будет уменьшаться с увеличением объема выборки. На практике эту погрешность не учитывают при n ³ 50, и в формуле (5.39) для доверительного интервала генеральный параметр заменяют выборочным стандартом.



При небольших объемах выборки для построения доверительного интервала используют распределение Стьюдента или t-распределение. Распределение Стьюдента имеет случайная величина t:

 

. (5.41)

 

Плотность вероятности t-распределения имеет вид

 

, (5.42)

 

где Г – гамма-функция; f – число степеней свободы выборки; –¥ < t < ¥. Если выборочная дисперсия и среднее определяются по одной и той же выборке, то f = n – 1.

Таким образом, распределение Стьюдента зависит только от числа степеней свободы f, с которым была определена выборочная дисперсия. На рис. 5.7 приведены графики плотности t-распределения для числа степеней свободы: f = 1, f = 5 и f = 50.

 

 

Рис. 5.7. Плотность распределения Стьюдента

 

Из рисунка видно, что при f = 50 распределение Стьюдента практически совпадает с нормальным распределением (рис. 5.6, а) и так же, как и нормальное, распределение Стьюдента является симметричным.

Доверительный интервал для математического ожидания t-распре-деления равен

, (5.43)

 

где – квантиль распределения Стьюдента. Значения квантилей распределения Стьюдента приведены в приложении 4.

 



<== предыдущая лекция | следующая лекция ==>
Нормальное распределение | Определение общей дисперсии для серии параллельных опытов


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.