русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Лемма 3


Дата добавления: 2013-12-23; просмотров: 649; Нарушение авторских прав


Следствие из леммы 2 и признака оптимальности

Задача А. Максимизировать линейную функцию на множестве n-мерных векторов х = (х1, х2, . . ., хn), удовлетворяющих условиям 1 ., , 2. Задача А*.Минимизировать линейную функцию на множестве m-мерных векторов y = (y1, y2, . . ., ym), удовлетворяющих системе линейных неравенств 1. - 2. , .

Теорема. Если базисное множество К является одновременно допустимым и двойственно допустимым базисным множеством, то отвечающие ему векторы и оптимальные соответственно в задачах А и А*.

Доказательство.Пусть К – допустимое базисное множество и двойственно допустимое базисное множество. Это значит, что вектора и - допустимые. На основании леммы 2 , а это достаточно для того, чтобы вектор был оптимальным и вместе с ним и вектор (см. краткую форму достаточного признака оптимальности)▄

Пусть задано некоторое базисное множество К и от­вечающий ему вектор

х (К) =1, х2, . . ., хп). Кроме того, для некоторогоизвестны коэффициенты gk в разложении вектора посоответствующим базисным векторам:

=.

Тогда при любом вектор=() с компонентами

, , , , ,

удовлетворяет условию , причем значение линейной функции на этом векторе может быть вычислено по формуле

,где величина определяется из системы , .



<== предыдущая лекция | следующая лекция ==>
Лемма 2 | Следствие 2 из леммы 3


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.