русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

И ее следствия


Дата добавления: 2013-12-23; просмотров: 927; Нарушение авторских прав


Основная теорема теории линейного программирования

Пример применения признака оптимальности в развернутой форме

Пример применения признака оптимальности в развернутой форме

Проверить вектор на оптимальность в следующей задаче ЛП: Максимизировать при условиях: еaijyi + cj, = 0, если хj >0 для jОJ2, iI – условие г)   Запишем условие г) признака оптимальности: ( т.к. , следовательно, в первом и третьем ограничении условия 20 двойственной задачи достигается равенство)  
Проверить вектор на оптимальность в следующей задаче ЛП: Максимизировать при условиях: д) отсутствует, т.к. ни одно ограничение 20 основной задачи не выполняется как строгое неравенство. Из условия г) находим . Найден вектор . Проверяем его допустимость в двойственной задаче, т.е. выясняем, выполняются ли условия I0 и 20 двойственной задачи. Т.к. все условия выполняются, вектор yявляется оптимальным в двойственной задаче, а векторх=(1, 0, 1, 0)- оптимальным в основной задаче.  

 

Для разрешимости задачи математического программирования (как и в любой оптимизационной задачи) необходимо, чтобы множество допустимых решений было не пусто, и целевая функция на этом множестве была ограничена сверху (если задача на максимум), либо снизу (если задача на минимум).

Теорема двойственности. Каковы бы ни были исходные данные, для задач 1 и 1* имеет место один из следующих взаимоисключающих случаев.

1. В задачах 1 и 1* имеются оптимальные векторы х и у и , т.е. обе задачи разрешимы.

2. В задаче 1 существуют допустимые векторы х из некоторого множества Х, но линейная функция на множестве этих векторов не ограничена сверху, т.е., тогда в задаче 1* нет допустимых векторов.

3. В задаче 1* существуют допустимые векторы , но функция не ограничена снизу на множестве этих векторов, т.е. , тогда в задаче 1 нет допустимых векторов.



4. В задачах 1 и 1* нет допустимых векторов, то есть



<== предыдущая лекция | следующая лекция ==>
Пример применения признака оптимальности в развернутой форме | Экономическая интерпретация двойственных задач


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.