русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Пример применения признака оптимальности в развернутой форме


Дата добавления: 2013-12-23; просмотров: 1975; Нарушение авторских прав


Пример применения признака оптимальности в развернутой форме

Признак оптимальности в развернутой форме

Доказательство.

Признак оптимальности в краткой форме

Для оптимальности допустимого вектора х=( х12, …хn,) в задаче 1 достаточно существования допустимого вектора y=(y1,y2,…..yn) в задаче 1*, удовлетворяющего условию

m(х)= n(у)(16)

Тогда допустимый вектор y=(y1,y2,…..yn) также является оптимальным в задаче 1*.

 

Пусть вектор х допустимый и существует допустимый вектор у такой, что справедливо (16). Покажем, вектор х оптимальный.

Рассмотрим некоторый другой оптимальный вектор х′ в задаче 1 (х′≠х), тогда имеем пару векторов х′ и у. Для этой пары допустимых векторов справедлива лемма 1, т. е. m(х′)≤ n(у) =m(хm(х′)≤m(х). Отсюда следует что х – оптимальный вектор.

Покажем теперь, что вектор у также является оптимальным.

Рассмотрим некоторый другой оптимальный вектор у′ в задаче 1 (у′≠у), тогда имеем пару векторов х и у′ . Для этой пары допустимых векторов справедливо лемма 1, т. е. n( у′)≥m(х)= n(у) и n(у)≤ n( у′). Отсюда следует что у – оптимальный вектор.▄

 

Для оптимальности допустимого вектора х=(х12…,хn,) в задаче 1 достаточно существование m-мерного вектора у=(у123,…,уm), удовлетворяющего условиям:

а) уi і 0, iОI2

б) еaijyi + cj = 0, jОJ1,

iОI

в) еaijyi + cj, £ 0, jОJ2,

iОI

г) еaijyi + cj, = 0, если хj >0 для jОJ2,

iОI

д) уi = 0, если еaijxj + bi >0, iОI2 ,

jОJ

тогда вектор у является оптимальным в задаче 1*.

 

 

Как этим признаком пользоваться?

Предположим, что мы имеем допустимый вектор х, т.е. хj ≥0 и такие, что , .



Тогда попытаемся найти вектор у из уравнений б), г), д). Эта система совместна и имеет единственное решение, если выполняются следующие условия:

1) Количество уравнений в системе m (совпадает с числом переменных);

2) Матрицы при неизвестных – неособенные

 

 

Проверить вектор на оптимальность в следующей задаче ЛП: Максимизировать при условиях: Решение. Решение задачи необходимо начинать с проверки допустимости данного вектора . Подставляя значения компонент вектора в ограничении I0 и 20, убеждаемся, что все они выполняются. Для проверки остальных условий признака оптимальности составляем двойственную задачу: Требуется найти вектор , удовлетворяющий условиям:


<== предыдущая лекция | следующая лекция ==>
Пример составления двойственной задачи ЛП | И ее следствия


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.