русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Понятие корреляции


Дата добавления: 2013-12-23; просмотров: 1629; Нарушение авторских прав


Корреляция – это согласованность изменения признаков. Если два явления изменяются синхронно и эти изменения можно выразить количественно, то между показателями этих явлений будет наблюдаться корреляция. Например, корреляция может наблюдаться между ростом и весом людей (большая вероятность, что чем выше человек– тем больше будет его вес). Или между уровнем интеллекта и показателями школьной успеваемости.

Нельзя говорить, что корреляция представляет собой выражение зависимости одного явления от другого, так как корреляция не всегда предполагает наличие причинно-следственной связи.

Корреляции бывают как линейные, так и нелинейные. Нелинейной может быть, например, связь между уровнем мотивации и эффективностью выполнения задачи (так называемая кривая мотивации Йеркса-Додсона). При повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутствует снижение эффективности (См. рис.).

Линейную корреляцию можно количественно измерить. Степень связи между признаками выражается величиной, называющейся коэффициентом корреляции. Значения данного коэффициента (обозначается чаще всего буквой R или r) могут находиться в диапазоне от +1 до –1. В случае прямой пропорциональной зависимости одного признака от другого значение коэффициента приближается единице. Отрицательный коэффициент свидетельствует о разной направленности варьирования признаков: при изменении одного

в сторону увеличения – другой уменьшается. Например, показатели интеллектуальной ригидности отрицательно коррелируют с уровнем интеллекта, и положительно - с показателями интеллектуальной настойчивости. Величина близкая к нулю говорит об отсутствии взаимосвязи между признаками.



Данные, полученные при корреляционном исследовании, обычно изображают в виде диаграммы рассеивания, на которой каждая переменная откладывается на своей оси, а каждая точка отражает одиночное измерение. Выше изображен пример графического представления линейной корреляции между показателями роста в сантиметрах и веса в килограммах у представителей группы студентов СПбАА. Если бы коэффициент корреляции был равен +1, то точки на графике выстроились бы в ровную линию. В настоящем примере этот коэффициент составляет r = 0,76.

Какова прогностическая значимость вычисления корреляций? Оно помогает установить, можно ли предсказывать возможные значения одного показателя, зная величину другого.

Коэффициент корреляции это безразмерная величина и не зависит от масштабов измерения. Например, сила связи между ростом и весом будет одной и той же независимо от того, проводились ли измерения в дюймах и футах или в сантиметрах и килограммах.

В зависимости от типа шкалы, в которой измерены переменные, используют различные виды корреляции. Таким образом, выделяют следующие виды корреляции: линейную (метрическую), ранговую и между номинативными переменными. Если данные измерены в интервальной или абсолютной шкале и укладываются в кривую нормального распределения, то применяется метод линейной корреляции. При этом используется вычисление коэффициента корреляции по Пирсону.

Если метрические данные не подчиняются закону нормального распределения, то рекомендуется преобразовать метрические данные в ранговые и применить метод ранговой корреляции. Этот же метод используется при работе с переменными, измеренными в порядковой шкале. В этом случае используют вычисление коэффициента ранговой корреляции по Спирмену или по Кендаллу.

Для анализа зависимостей номинативных переменных используют критерий С-Пирсона, хи-квадрат Пирсона, (не путать последние два с линейной корреляцией Пирсона!), точный критерий Фишера, статистику фи-квадрат.



<== предыдущая лекция | следующая лекция ==>
Тема 5 Исследование взаимосвязи признаков | Тема 6 Линейная корреляция


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.