русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Тема 5 Исследование взаимосвязи признаков


Дата добавления: 2013-12-23; просмотров: 1367; Нарушение авторских прав


Задания для самостоятельной работы.

Классификация и назначение критериев

Степени свободы

В таблицах критических значений приводятся или показатели объема выборки, или показатели степеней свободы. Степень свободы (обозначается как dfили ν)это величина производная от объема выборки (обозначаемой буквой n). Вопрос о степени свободы всегда возникает при сравнении выборок. Если мы не определили этого параметра, то мы не сможем пользоваться таблицами.

Число степеней свободы – это число данных из выборки, значения которых могут быть случайными. Если, допустим, сумма трех данных равна 8, то первые два из них могут принимать любые значения, но если они определены, то третье значение становится известным автоматически. Например, значение первого данного равно 3, а второго равно 1. В таком случае третье может быть равным только 4. таким образом, в такой выборке имеются только 2 степени свободы.

Если у нас имеются две независимые выборки, то число степеней свободы для первой из них составляет n1 – 1, а для второй – n2 – 1. Таким образом, число степеней свободы для этих независимых выборок будет составлять (n1 + n2 ) – 2.

Для зависимых выборок число степеней свободы равно n – 1.

Статистические критерии делятся на параметрические и непараметрические. Параметрические критерии включают в формулу расчета среднее арифметическое и дисперсии и применяются при анализе метрических данных, вписывающихся в кривую нормального распределения. При работе с непараметрическими критерии оперируют частотами и рангами. При этом данные должны быть измерены в номинативной или ранговой шкале. Непараметрический критерий рекомендуется использовать также для анализа метрических данных, распределение которых значительно отличается от нормального. При этом метрические данные следует перевести в ранговые.



Статистические критерии можно также классифицировать в зависимости от задач, стоящих перед исследователем (см. табл.).

  Параметрические критерии Непараметрические критерии
Определение согласованности изменений (корреляция) R (коэффициент корреляции Пирсона) rs (коэффициент корреляции Спирмена) τ (коэффициент корреляции тау-Кендалла) C (коэффициент сопряженности С-Пирсона φ (коэффициент фи-корреляции)
Сравнение эмпирической и теоретической частот   χ2 (критерий хи-квадрат)
Оценка достоверности различий t-критерий Стьюдента для независимых выборок U-критерий Манна-Уитни
Оценка достоверности различий при повторных измерениях t-критерий Стьюдента для зависимых выборок T-критерий Вилкоксона
Анализ изменений признака Дисперсионный анализ  

В настоящем пособии материал будет далее излагаться в соответствии с этой классификацией.

Как видно из таблицы, иногда одна и та же задача может быть решена при помощи различных методов. При этом разные критерии характеризуются разной мощностью, то есть, различной чувствительностью к выявлению различий, если они есть.

  1. Допустим, требуется сравнить уровень интеллекта мужчин и женщин. Как будут выглядеть нулевая и альтернативная гипотезы данного исследования?
  2. Привести собственные примеры зависимой и независимой выборок.
  3. Чему равна степень свободы для двух зависимых выборок объемом n = 6?
  4. Чему равна степень свободы для двух независимых выборок объемом n1 = 10 и
    n2 = 12?


<== предыдущая лекция | следующая лекция ==>
Зависимые и независимые выборки | Понятие корреляции


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.