В качестве наиболее часто используемых мер изменчивости следует назвать размах, дисперсию, стандартное отклонение.
Размах – это разница между максимальным и минимальным значениями.
Р = Хmax – Xmin
Для определения размаха выборку необходимо сначала уорядочить. Например, в массиве данных {8, 9, 11, 12, 12, 13, 14, 17, 19, 19, 20, 20} размах будет равен разности между наибольшим и наименьшим значениями, то есть 20 – 8 = 12. но если бы выборка была неупорядочена и имеет большой объем, было бы трудно найти минимальное и максимальное значения.
Дисперсия – это мера разброса данных относительно среднего значения.
Если вычисление дисперсии производится вручную, то рекомендуется пользоваться специальной таблицей. Например, необходимо вычислить дисперсию для следующего массива данных {5, 2, 5, 3, 4, 3, 4, 3, 3, 1, 2, 1}. Упорядоченные данные заносятся в таблицу.
Хi
Мx
Хi - Мx
(Хi – Мx)2
-2
-2
-1
-1
n = 12, Мx = 3
Σ(Хi – Мx)2 = 20
В соответствии с формулой D = 20 / (12 – 1) = 1,818
Стандартное отклонение представляет собой квадратный корень из дисперсии:
По ряду причин этот показатель является более удобным чем дисперсия.
Одним из важнейших в математической статистике является понятие нормального распределения. Нормальное распределение (называемое также распределением Гаусса), характеризуется тем, что крайние значения признака в нем встречаются достаточно редко, а значения, близкие к средней величине – часто. Нормальное распределение возникает, когда данная случайная величина представляет собой сумму большого числа независимых случайных величин, каждая из которых играет в образовании всей суммы незначительную роль.
Нормальное распределение имеет колоколообразную форму, значения моды, медианы и среднего арифметического равны между собой. Было установлено, что многие биологические параметры распределены подобным образом (рост, вес и так далее). Впоследствии психологи выяснили, что и большинство психологических свойств (показатели интеллекта, темпераментных особенностей, способностей и другие психические явления) также имеют нормальное распределение. Этот принцип учитывается при стандартизации тестовых методик. При этом, чем больше объем выборки, тем более полученное эмпирическое распределение приближается к нормальному.
Характерное свойство нормального распределения состоит в том, что 68,26 % из всех его наблюдений всегда лежат в диапазоне ± 1 стандартное отклонение от среднего арифметического (какова бы ни была величина стандартного отклонения). 95,44 % - в пределах ± двух стандартных отклонений и 99,72 – в пределах ± трех стандартных отклонений.