6. Объединить две предыдущие выборки и провести ранжирование по правилу «большему значению – меньший ранг»
7. Перевести показатели осведомленности из Таблицы I Приложения в ранговую шкалу. Выделить уровни выраженности показателей посредством их перевода в номинативную шкалу.
Существуют 3 способа выражения центральной тенденции распределения: мода, среднее арифметическое, медиана.
Мода – это наиболее часто встречающееся значение в ряду данных. Например, в следующей выборке: {2, 3, 5, 1, 4, 5, 6, 5, 2} модой будет являться значение 5 (обозначатся следующим образом: Мо = 5). Если массив содержит 2 моды, то распределение называется бимодальным. Таким примером может служить выборка {3, 3, 5, 1, 4, 5, 6, 5, 3}. Здесь Мо1 = 5, а Мо2 = 3.
Бимодальное или полимодальное распределение могут рассматриваться как признак неоднородности выборки. Например, школьный класс образован в результате механического слияния двух разных классов, и показатели мод интеллекта были изначально различны. После слияния в объединенной выборке профиль интеллекта будет иметь 2 моды.
Среднее арифметическое – это отношение суммы всех значений данных к числу слагаемых. Среднее арифметическое обозначается как Мх или М. Число слагаемых (то есть объем выборки) обозначается буквой n.
Если в ряду данных присутствуют числа со знаком «минус», то суммирование производится с учетом этих знаков.
Медиана разбивает выборку на 2 равные части. Для определения медианы рекомендуется сначала упорядочить данные. Например, для определения значения медианы в массиве {8, 11, 12, 20, 12, 13, 9, 15, 19, 17, 19} необходимо этот массив упорядочить (произвести сортировку по возрастанию): {8, 9, 11, 12, 12, 13, 15, 17, 19, 19, 20}. Медиана будет равна 13 (обозначатся след. образом: Ме = 13). Если количество данных в выборке четное, то медиана равна средней арифметической между двумя центральными значениями. Например, если добавить в последнюю выборку значение 20, и упорядоченный массив примет следующий вид: {8, 9, 11, 12, 12, 13, 15, 17, 19, 19, 20, 20}, то медиана будет равна 14. В подобном случае медиана не может соответствовать ни одному из значений выборки. Медиана может принимать и дробные значения. Например, если мы в последнем примере 15 (одно из двух центральных значений) заменим на 14, то выборка примет вид {8, 9, 11, 12, 12, 13, 14, 17, 19, 19, 20, 20} и медиана будет равна 13,5.