Решение алгебраических и трансцендентных уравнений
Классификация функций
Элементарные функции делятся на алгебраические и неалгебраические (трансцендентные).
Алгебраической называется функция, в которой над аргументом проводится конечное число алгебраических действий. К числу алгебраических функций относятся:
• целая рациональная функция (многочлен или полином):
у=а0хп+а1хп-1+... + ап-1х + аn;
• дробно-рациональная функция – отношение двух многочленов;
• иррациональная функция (если в составе операций над аргументом имеется извлечение корня).
Всякая неалгебраическая функция называется трансцендентной. К числу трансцендентных функций относятся функции: показательная, логарифмическая, тригонометрические, обратные тригонометрические.
Часто приходится находить корни уравнений вида , где f(x) определена и непрерывна на некотором интервале.
Если f(x) представляет собой многочлен, то уравнение - алгебраическое, если в функцию входят функции типа: тригонометрических, логарифмических, показательных и т.п., то уравнение называется трансцендентным.
Решение уравнения вида разбивается на два этапа:
1. отделение корней, т.е. отыскание достаточно малых областей, в каждой из которых заключен один и только один корень уравнения;
2. вычисление выделенного корня с заданной точностью.
Первый этап более сложный, в этом случае может помочь построение приближенного графика функции с анализом на монотонность, смену знака, выпуклость и т.д.
Для вычисления выделенного корня существует множество методов, например:
- метод итераций;
- метод половинного деления;
- метод Ньютона.
Уравнение можно представить в виде: .
Например: x-2+sin(1/x)=0 → x=2-sin(1/x)
Далее на отрезке [a,b], где функция имеет корень, выбирается произвольная точка x0 и далее последовательно вычисляется:
Процесс вычисления значений xk называется итерационным процессом.
Если на отрезке [a,b] выполнено условие |φ΄(x)| ≤ q <1, то итерационный процесс сходится к корню уравнения .
Если необходимо вычислить корень с точностью ε, то процесс итераций продолжается до тех пор, пока для двух последовательных приближений xn и xn-1 не будет выполнено:
, при этом всегда выполняется , где ε заданная абсолютная погрешностью корня x*.
Если q ≤0.5 , то можно пользоваться соотношением .
В приведенном примере |φ΄(x)|= |(2-sin(1/x))΄|=cos(1/x)/x^2 < 0,47 на отрезке [1.2,2]