русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Частные производные функций нескольких переменных


Дата добавления: 2013-12-23; просмотров: 1412; Нарушение авторских прав


Дифференцируемость функций нескольких переменных

Пусть М(х1, х2, ..., хm) внутренняя точка области определения функции u=f(x1, ..., xm). Пусть Dxk - приращение k-ой координаты в данной фиксированной т.М, ему соответствует частное приращение функции

Dxk u º

f(x1, ..., xk-1, xk+Dxk, xk+1, ..., xm) - f(x1, ..., xm).

Рассмотрим отношение , которое зависит от Dxk и определено при всех достаточно малых Dxk, отличных от нуля.

 

Определение 1.Если существует , то он называется частной производной функции

u=f(x1, ..., xm) в т. М(x1, ..., xm) по аргументу xk и обозначается одним из символов:

. Таким образом, .

Замечание.Так как изменяется только xk + Dxk, т.е. k-я координата аргумента функции f, то частная производная является обыкновенной производной функции f как функции только k-й переменной (при фиксированных остальных переменных). Это позволяет вычислить частные производные по одной из переменных по обычным формулам дифференцирования, если зафиксировать все остальные переменные.

 

Пример 1.u = x2 + 3xy - y

вычисляем при условии, что y = const

вычисляем при условии, что x = const

Пример 2.

(при фиксированном у применима обычная теорема о производной сложной функции).

Аналогично

.

Выясним теперь, насколько полную информацию дают частные производные функции в данной точке о поведении функции в окрестности этой точки.

Сразу отметим, что частные производные в т.М0 могут дать информацию о поведении функции только на прямых, проходящих через т.М0 и параллельных координатным осям.

Конечно, этой информации совсем не достаточно, чтобы судить о поведении функции в целой окрестности т.М0 (и, в частности, на других лучах, проходящих через т.М0).

 

Пример функции показывает, что частные производные ее



(аналогично )

существуют и обращаются в нуль не только в т. (0,0), но и всюду на координатных осях, а сама функция не имеет в т. (0,0) предела (см. тему 4). Заметим, что в одномерном случае из существования производной следовала непрерывность функции.

Таким образом, мы приходим к необходимости ввести более сильное условие, чем существование частных производных, чтобы оно было аналогом дифференцируемости функции одной переменной. Это условие должно быть связано с полнымприращением функции в точке.

 



<== предыдущая лекция | следующая лекция ==>
Основные свойства непрерывных функций | Дифференцируемость функции нескольких переменных


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.