русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

План обследования системы и анализ ее функционирования.


Дата добавления: 2013-12-23; просмотров: 1079; Нарушение авторских прав


В плане должны быть предусмотрены:

• описание функций, реализуемых объектом;

• определение взаимодействий всех систем и элементов объекта;

• определение зависимости между входными и выходными переменными и влияние переменных управляющих воздействий на эти зависимости;

• определение экономических показателей функционирования системы.

Результаты обследования системы и окружающей среды пред­ставляются в виде описания процесса функционирования, которое используется для идентификации системы. Идентифицировать сис­тему — значит выявить и изучить ее, а также:

• получить более полную характеристику системы и ее поведения;

• познать объективные закономерности ее внутренней организа­ции;

• очертить ее границы;

• указать на вход, процесс и выход;

• определить ограничения на них;

• построить ее структурную и математическую модели;

• описать ее на каком-либо формальном абстрактном языке;

• определить цели, принуждающие связи, критерии действия си­стемы.

После идентификации системы строится концептуальнаямодель, являющаяся «идеологической» основой будущей математической модели. Именно в ней отражается состав критериев оптимальности и ограничений, определяющих целевую направленность модели. Пе­ревод на этапе формализации качественных зависимостей в количе­ственные преобразует критерий оптимальности в целевую функ­цию, ограничения — в уравнения связи, концептуальную модель — в математическую.

Если посмотреть на схему построения математической модели (рис. 1), то можно увидеть, что процесс ее построения пред­ставляет собой не только прямую, но и обратную связь отдельных этапов. Это означает, что при работе над последующим этапом приходится возвращаться к предыдущим для уточнения тех или иных моментов.

На основе концептуальной модели можно построить фактор­ную модель (рис. 3), которая устанавливает логическую связь между параметрами объекта, входными и выходными переменны­ми, факторами внешней среды и параметрами управления, а также учитывать обратные связи в системе.




Рис. 3.Факторная модель производственной системы очистки воды

• 3-й этап. Составление математической модели. Вид математи­ческой модели в значительной степени зависит от цели исследова­ния. Вначале лучше поискать подходящую модель в литературе или использовать те или иные известные закономерности экологии в виде функций, связывающих переменные и постоянные факторы модели между собой.

Математическая модель может быть в виде математического выражения, представляющего собой алгебраическое уравнение, или неравенство, не имеющее разветвления вычислительного процесса

при определении любых переменных состояния модели, целевой функции и уравнений связи.

Для построения такой модели формулируются следующие поня­тия:

критерий оптимальности — показатель, выбираемый исследователем, имеющий, как правило, экологический смысл, который служит для формализации конкретной цели управления объектом исследования и выражаемый при помощи целевой функции;

целевая функция — характеристика объекта, установленная из условия дальнейшего поиска критерия оптимальности, математически связывающая между собой те или иные факторы объекта исследования. Целевая функция и критерий оптимальности — разные понятия. Они могут быть описаны функциями одного и того же вида или же разными функциями;

ограничения — пределы, сужающие область осуществимых, приемлемых или допустимых решений и фиксирующие основные внутренние и внешние свойства объекта. Ограничения определяют область исследования, протекания процессов, пределы изменения параметров и факторов объекта.

Так, например, для факторной модели, приведенной на рис. 3, выбираем в качестве критерия оптимальности максимальный объем очищенной воды при заданных ресурсах Xv Х2,..., Хп. Тогда целевая функция должна связать между собой X, A, S, F, т.е.

Y = maxf(X,A,S,F)

при ограничении значений переменных X, Ру и Qоб.

Следующим этапом построения системы является формирова­ние математической модели, включающее в себя несколько видов работ: математическую формализацию, численное представление, анализ модели и выбор метода ее решения.

Математическая формализация осуществляется по концептуаль­ной модели. При формализации рассматривают три основные ситуа­ции:

1)известны уравнения, описывающие поведение объекта. В этом случае решением прямой задачи можно найти реакцию объекта на заданный входной сигнал;

2)обратная задача, когда по заданному математическому описанию и известной реакции необходимо найти входной сигнал, вызывающий этот отклик;

3)математическое описание объекта неизвестно, но имеются или могут быть заданы совокупности входных и соответствующих им выходных сигналов. В этом случае имеем дело с задачей идентифи­кации объекта.

При моделировании производственно-экологических объектов ь третьей ситуации при решении задачи идентификации используется подход, предложенный Н. Винером, и известный как метод «черного ящика». В качестве «черного ящика» рассматривается объект в целом, вследствие его сложности. Так как внутреннее устройство объекта неиз­вестно, мы можем изучить «черный ящик», найдя входы и выходы. Сопоставляя входы и выходы, можно написать соотношение

Y = AX,

где X — вектор входных параметров; Y — вектор выходных параметров; A — оператор объекта, преобразующий Х в Y.

Для описания объекта в виде математической зависимости в задачах идентификации используются методы регрессивного анали­за. При этом возможно описание объекта множеством математичес­ких моделей, так как нельзя вынести обоснованного суждения о его внутреннем устройстве.

Оригинальные математические модели можно написать на ос­нове проведенных исследований систем и апробированных в реаль­ной обстановке. Для проведения новых исследований такие модели корректируются под новые условия.

Математические модели элементарных процессов, физическая природа которых известна, записываются в виде тех формул и за­висимостей, которые установлены для этих процессов. Как прави­ло, статические задачи выражаются в виде алгебраических выраже­ний, динамические — в виде дифференциальных или конечно-раз­ностных уравнений.

Если целевая функция представлена в виде выражения

Y= f (x1 , x2 , … ,xq , p, E)

то формализация критерия оптимальности переводит целевую функ­цию в оптимизационную, т.е.

Yi = fi (x1i , x2i,.... xqi, Ei)→ extr, q = 1, q .

Численное представление модели производится для подготовки ее к реализации на компьютере. Задание числовых значений трудностей не представляет. Осложнения встречаются при компактном представ­лении обширной статистической информации и результатов экспе­риментов.

Основными методами преобразования табличных значений к аналитическому виду являются: интерполяция, аппроксимация и эк­страполяция.

Интерполяция — приближенное или точное нахождение какой-либо величины по известным отдельным значениям этой же или других величин, связанных с ней. Например, через любые п+1 точ­ки можно всегда провести кривую, описываемую полиномом n-ой степени так, чтобы она прошла через каждую из заданных точек α1 , α1, …, αn .Эта кривая называется интерполирующей. Здесь приме­няется метод Ньютона или Лагранжа.

Аппроксимация — замена одних математических объектов други­ми, в том или ином смысле близкими к исходным. Аппроксимация позволяет исследовать числовые характеристики и качественные свой­ства объекта, сводя задачу к изучению более простых или более удоб­ных объектов. Например, для приближения заданной функции f(x) выбирают аппроксимирующую функцию Ф(х) из классов математи­ческих функций, в наибольшей степени соответствующих специфи­ке протекания исследуемого процесса.

Экстраполяция — продолжение функции за пределы ее области определения, при котором продолженная функция принадлежит за­данному классу. Экстраполяция функции обычно производится с по­мощью формул, в которых использована информация о поведении функций в некотором конечном наборе точек, называемых узлами экстраполяции, принадлежащими к области определения.

Формальная экстраполяция сводится к математически оптималь­ной подгонке исходного статистического ряда к какой-либо аппрок­симирующей функции. Критерием оптимальности здесь может высту­пать близость точек ряда к аппроксимирующей функции.

Прогнозная экстраполяция строится на основе математического анализа исходного ряда с учетом логики и существа развития объекта, его физики и абсолютных пределов.

Следующим этапом построения является анализ полученной мо­дели и выбор метода ее решения. Основой для вычисления значений выходных характеристик модели служит составленный на ее базе алгоритм решения задачи на компьютерной программе. Разработка и программиро­вание такого алгоритма, как правило, не встречают принципиаль­ных трудностей.

Более сложной является организация вычислительного процес­са для определения выходных характеристик, лежащих в допусти­мых областях, особенно для многофакторных моделей. Еще слож­нее — поиск решений по оптимизационным моделям. Самая совер­шенная и адекватная описываемому объекту математическая модель без нахождения оптимального значения бесполезна, она не может быть использована.

Основную роль при разработке алгоритма поиска оптимальных решений играют характер факторов математической модели, число критериев оптимальности, вид целевой функции и уравнений связи. Вид целевой функции и ограничений определяет выбор одного из трех основных методов решения эколого-математических моделей:

• аналитического исследования;

• исследования при помощи численных методов;

• исследования алгоритмических моделей с помощью методов экспериментальной оптимизации на компьютере.

Аналитические методы отличаются тем, что помимо точного значения искомых переменных они могут давать оптимальное ре­шение в виде готовой формулы, куда входят характеристики внеш­ней среды и начальные условия, которые исследователь может из­менять в широких пределах, не меняя самой формулы.

Численные методы дают возможность получить решение путем многократного вычисления по определенному алгоритму, реализу­ющему тот или иной численный метод. В качестве исходных дан­ных для вычисления используются числовые значения параметров объекта, внешней среды и начальных условий. Численные методы являются итеративными процедурами: для проведения следующего шага расчетов (при новом значении управляемых переменных) ис­пользуются результаты предыдущих расчетов, что позволяет полу­чать в процессе вычислений улучшенные результаты и тем самым находить оптимальное решение.

Свойства конкретной алгоритмической модели, на которой ба­зируется алгоритм поиска оптимального решения, например ее ли­нейность или выпуклость, могут быть определены только в процес­се экспериментирования с ней, в связи с чем для решения моделей этого класса используются так называемые методы эксперимен­тальной оптимизации на компьютере. При использовании этих методов производится пошаговое приближение к оптимальному решению на основе результатов расчета по алгоритму, моделирующему работу исследуемой системы. Методы базируются на принципах поиска оптимальных решений в численных методах, но в отличие от них все действия по разработке алгоритма и программы оптимизации выполняет разработчик модели.

Имитационное моделирование задач, содержащих случайные параметры, принято называть статистическим моделированием.

Заключительным шагом создания модели является составление ее описания, которое содержит сведения, необходимые для изучения мо­дели, ее дальнейшего использования, а также все ограничения и допу­щения. Тщательный и полный учет факторов при построении модели и формулировке допущений позволяет оценить точность модели, из­бежать ошибок при интерпретации ее результатов.

• 4-й этап. Вычисления. При решении задачи необходимо тщательно разобраться с размерностью всех величин, входящих в математическую модель, и определить границы (пределы), в которых будет лежать искомая целевая функция, а также требуемую точность вычислений. Если возможно, то вычисления проводятся при неизменных условиях по несколько раз, чтобы убедиться, что целевая функция не изменяется.

• 5-й этап. Выдача результатов. Результаты исследования объекта могут выдаваться в устной или письменной форме. Они должны включать в себя краткое описание объекта исследования, цели исследования, математическую модель, допущения, принятые при выборе математической модели, основные результаты вычислений, обобщения и выводы.

 



<== предыдущая лекция | следующая лекция ==>
Этапы построения математической модели | Элементы теории подобия, применяемые в моделировании


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.