русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Подмножества. Отношение включения.


Дата добавления: 2013-12-23; просмотров: 1311; Нарушение авторских прав


Множество Х является подмножеством множества Y, если любой элемент множества Х ∈ и множеству Y. Обозначается X⊆Y.

Если необходимо подчеркнуть, что Y содержит и другие элементы, кроме элементов из Х, то используют символ строгого включения ⊂: X⊂Y. Связь между символами ⊂ и ⊆ дается выражением:

X⊂Y ⇔ X⊆Y и X≠Y

Отметим некоторые свойства подмножества, вытекающие из определения:

  1. X⊆Х (рефлексивность);
  2. [X⊆Y и Y⊆Z] → X⊆Z (транзитивность);
  3. ∅ ⊆ M. Принято считать, что пустое множество является подмножеством любого множества.

Исходное множество А по отношению к его подмножествам называется полным множеством и обозначается I.

Любое подмножество Аi множества А называется собственным множеством А.

Множество, состоящие из всех подмножеств данного множества Х и пустого множества ∅, называется булеаном Х и обозначается β(Х). Мощность булеана |β(Х)|=2n.

Счетное множество — это такое множество А, все элементы которого могут быть занумерованы в последовательность (м.б. бесконечную) а1, а2, а3, ..., аn, ... так, чтобы при этом каждый элемент получил ишь один номер n и каждое натуральное число n было бы в качестве номера дано одному и лишь одному элементу нашего множества.

Множество, эквивалентное множеству натуральных чисел, называется счетным множеством.

Пример. Множество квадратов целых чисел 1, 4, 9, ..., n2 представляет собой лишь подмножество множества натуральных чисел N. Множество является счетным, так как приводится во взаимно однозначные соответствия с натуральным рядом путем приписывания каждому элементу номера того числа натурального ряда, квадратом которого он является.

Существует 2 основных способа задания множеств.

  • перечислением (X={a,b}, Y={1}, Z={1,2,...,8}, M={m1,m2,m3,..,mn});
  • описанием — указывается характерное свойства , которым обладают все элементы множества.

Множество полностью определено своими элементами.



Перечислением можно задать только конечные множества (например, множество месяцев в году). Бесконечные множества можно задать только описанием свойств его элементов (например, множество рациональных чисел можно задать описанием Q={n/m, m, n∈Z, m≠0}.

Способы задания множества описанием:

а) заданием порождающей процедуры с указанием множества (множеств), которое пробегает параметр (параметры) этой процедуры — рекурсивный, индуктивный.

X={x: x1=1, x2=1, xk+2=xk+xk+1, k=1,2,3,...} — мн-во чисел Фибониччи.

{мн-во элементов х, таких, что х1=1,х2=1 и произвольное хk+1 (при к=1,2,3,...) вычисляется по формуле хk+2kk+1} или Х=[x: x1=1, x2=1, x3=2, x4=3, x5=5, x6=8, ...}

б) заданием вычислительной процедуры формульной зависимости:

X = {x: x=2sin(y)+1, y∈{0, p/2}} ⇔ {1, 3}

X = {x: x2-1=0 ⇔{+1,-1}

в) заданием характеристического свойства (высказывания), выделяющего элементы данного множества из элементов других множеств — предикатный.

А={x: x — четное число}; M={x: p(x)} — множество х, обладающих свойством p

N={n: n∈Z, n>0, Z={-..., -2, -1, 0, 1, 2, ...} — множество целых чисел

K={m: m=n2, n∈N} — множество всех квадратов натуральных чисел, N={1, 2, 3, ...}

X={x: 0≤x≤1, x∈N} ⇔ 1, 2, 3, ..., где N-мн-во целых чисел.

г) заданием с помощью операций над множествами — аналитический.

Отметим некоторые свойства подмножества, вытекающие из его определения:

Если X⊆Y и Y⊆X → X=Y

Для любого множества само это множество и ∅ можно рассматривать как его подмножества, называемые несобственными. Все другие подмножества — собственные.



<== предыдущая лекция | следующая лекция ==>
Лекция 12: Основные понятия теории множеств | Пересечение множеств


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.