русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Инклинометры

<== предыдущая статья | следующая статья ==>

Сенсоры угла наклона называют еще "инклинометрами" (от латинского incline – наклоняю). Чаще всего речь идет об угловом отклонении от вертикали или от горизонтальной плоскости. Уже самые древние строители использовали с этой целью отвесы, ватерпасы (рис. ,а,б,в), позже – уровни (рис. в). В начале ХХ века начали использовать ртутные выключатели, принцип действия которых показан на рис. 3.7,г. В герметически закрытой капсуле свободно перемещается капелька ртути. В капсулу из диэлектрика введены 2 металлических электрода. Когда капсула расположена вертикально, капля ртути находится в центре и электрически соединяет эти электроды. Если же капсула и плата, на которой она закреплена, наклоняются к горизонту на угол, который превышает критический, капля ртути под действием силы тяжести смещается, и электрический контакт разрывается, сигнализируя об опасном крене.


Рис. 3.7. Простейшие датчики наклона: а – отвес; б – ватерпас; в – уровень; г – ртутный выключатель

 

За последние десятилетия созданы и нашли широкое применение более точные инклинометры с электрическими выходными сигналами. На рис. 3.8 показан принцип действия электролитических инклинометров.


Рис. 3.8. Принцип действия электролитического инклинометра.

 

В несколько выгнутый герметичный корпус 1, например, из керамики или стекла, залит жидкий электролит 2 так, чтобы в нем остался воздушный пузырек 3. В корпус введены три электрода: электрод 4 – в центре, электроды 5 и 6 – на концах корпуса. Когда корпус находится точно в горизонтальном положении, а воздушный пузырек – над центральным электродом, то электрические сопротивления электролита между электродами 5 и 4, 4 и 6 одинаковы. Эти электрические сопротивления включены в плечи мостовой схемы, выход которой соединен с операционным усилителем. При равенстве сопротивлений мост сбалансирован, и сигнал на выходе равен нулю. Если сенсор слегка наклоняется, то воздушный пузырек смещается в сторону. Электрическое сопротивление между электродами изменяется. Баланс мостовой схемы нарушается, и на ее выходе появляется сигнал той или иной полярности, величина которого пропорциональная углу наклона. Чтобы исключить влияние поляризации электролита, для балансировки мостовой схемы и для ее питания используют переменный ток.

Другой вариант конструкции электролитического инклинометра показан на рис. 3.9. Электроды в виде проволочек размещены здесь параллельно оси, перпендикулярной к плоскости рисунка, вокруг которой при наклонах вращается сенсор. Жидкий электролит 2 заполняет корпус 1 лишь частично. Когда наклона нет, электрические сопротивления между центральным электродом 3 и боковыми электродами 4, 5 одинаковы. Эти сопротивления включены в плечи мостовой схемы переменного тока. Мостовую схему балансируют так, чтобы напряжение на выходе равнялось нулю. При наклонах сенсора количество электролита с одной стороны возрастает, а с другой уменьшается. Соответственно изменяются и электрические сопротивления. Сигнал на выходе мостовой схемы и после усилителя становится тем больше, чем больше угол наклона. А его полярность указывает направление наклона.


Рис. 3.9. Электролитический инклинометр: 1 - герметичный корпус; 2 - жидкий электролит; 3 - центральный электрод; 4, 5 - боковые электроды.

 

Много фирм выпускает подобные электролитические инклинометры: HL-Planartechnik Gmb, Seika Mikrosystemtechnik Gmb, Fraba Posital Gmb, ООО "Микросенсорные технологии", НПП "Уралметаллургавтоматика", The Fredericks Company и прочие. Разные серии инклинометров охватывают диапазоны углов наклона от –5° до +5° (с точностью измерения 0,001°), ±10° и ±15° (с точностью измерения 0,002°), ±30° (с точностью измерения 0,005°) и т.п.

Высокая точность, небольшие размеры, простота установки на объектах обусловили широкий диапазон их применения. Это и контроль за вертикальным положением высотных сооружений, точное определение направления бурения нефтяных, газовых и других буровых скважин, определение уклона автомобильных дорог, железнодорожных путей, штреков в шахтах, крена кораблей, автомобилей, строительных кранов и экскаваторов, измерение деформационного прогиба мостов, опорных балок и т.п.

Выпускаются не только простые, но и интеллектуальные инклинометры со встроенными микропроцессорами, которые выполняют довольно широкий набор функций. Это могут быть одно- и двухкоординатные инклинометры с цифровым интерфейсом, с возможностью автоматического управления предохранительными механизмами, с возможностью задания пользователем критических значений углов наклона, с выдачей предупредительных сигналов и т.п.

Некоторые промышленные образцы таких инклинометров показаны на рис. 3.10. Двухкоординатность достигается путем использования двух отдельных одноосных инклинометров, сориентированных во взаимно перпендикулярных направлениях.


Рис. 3.10. Некоторые образцы двухкоординатных интеллектуальных инклинометров

 

На рис. 3.11 показана оптоэлектронная конструкция инклинометра, которая обеспечивает возможность измерения одновременно двух углов наклона во взаимно перпендикулярных плоскостях. В корпусе 1 размещены светодиод 2, кремниевый чип 3 со сформированными в нем фотодиодами или фототранзисторами 4 и усилителями, пластиковое полушарие с прозрачной жидкостью 5 и оставленным в ней воздушным пузырьком 6. Этот пузырек, преломляя свет от светодиода 2, создает область тени 7. Когда корпус 1 расположен горизонтально, тень от пузырька одинаково прикрывает все 4 фотодиода. Если корпус немного наклоняется, то воздушный пузырек смещается. Соответственно по поверхности фотодиодов смещается и тень от него (рис. 3.11 справа). И сигналы от фотодиодов становятся разными. Их измерение позволяет точно рассчитать углы наклона относительно двух ортогональных осей. Для этого сенсор еще в процессе производства точно калибруют при нормальной и при крайних рабочих значениях температуры. Данные калибровки заносят в память микропроцессора.


Рис. 3.11. Конструкция и принцип действия двухкоординатного оптоэлектронного инклинометра

 

Погрешность измерения углов наклона таким способом не превышает 0,01°. Это позволяет с большой точностью контролировать форму поверхности, например, зеркал больших телескопов, плоскостность и горизонтальность направляющих рельсов больших высокоточных координатных столов и т.п.

 

Просмотров: 5160

<== предыдущая статья | следующая статья ==>

Это будем вам полезно:

Интеллектуальные портативные сенсоры для УЗ исследований

Анализ трудностей, возникающих при реализации неинвазивных спектрофотометрических сенсоров

Классификация химических датчиков

Объемные методы и средства измерения расхода

Метод спектрально-сейсморазведочного профилирования

Полуавтоматические электронные тонометры

Метод гидростатического измерения уровня

Методы и средства измерений геометрических параметров объектов с использованием интерферометров

Оптические датчики положения и перемещения объектов

Пример использования ППР иммуносенсора для выявления заболевания коров на лейкоз

Вольтамперометрические сенсоры

Магиторезистивные датчики углового преремещения объекта

Устройства для измерения содержания компонентов в смесях

Разновидности конструктивного исполнения и области применения микрофонов и гидрофонов

Вернуться в оглавление:Методы и средства измерений неэлектрических величин




Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.