MFC – это базовый набор (библиотека) классов, написанных на языке С++ и предназначенных для упрощения и ускорения процесса программирования под Windows. Перед изучением библиотеки MFC и ее использованием для создания Windows-приложений, следует вспомнить, как работает сама Windows и каковы принципы взаимодействия программ с ней, какова структура типичной Windows-программы.
Программная среда Windows
Рассмотрим наиболее важные моменты работы Windows и принципы взаимодействия программ с ней.
Интерфейс вызовов функций в Windows
Благодаря данному интерфейсу доступ к системным ресурсам осуществляется через целый рад системных функций. Совокупность таких функций называется прикладным программным интерфейсом, или API (Application Programming Interfase). Для взаимодействия с Windows приложение запрашивает функции API, с помощью которых реализуются все необходимые системные действия, такие как выделение памяти, вывод на экран, создание окон и т.п.
Библиотека MFC инкапсулирует многие функции API. Хотя программам и разрешено обращаться к ним напрямую, все же чаще это будет выполняться через соответствующие функции-члены. Как правило, функции-члены либо аналогичны функциям API, либо непосредственно обращаются к нужной части интерфейса.
Библиотеки динамической загрузки (DLL)
Поскольку API состоит из большого числа функций, может сложиться впечатление, что при компиляции каждой программы, написанной для Windows, к ней подключается код довольно значительного объема. В действительности это не так. Функции API содержатся в библиотеках динамической загрузки (Dynamic Link Libraries, или DLL), которые загружаются в память только в тот момент, когда к ним происходит обращение, т.е. при выполнении программы. Рассмотрим, как осуществляется механизм динамической загрузки.
Динамическая загрузка обеспечивает ряд существенных преимуществ. Во-первых, поскольку практически все программы используют API-функции, то благодаря DLL-библиотекам существенно экономится дисковое пространство, которое в противном случае занималось бы большим количеством повторяющегося кода, содержащегося в каждом из исполняемых файлов. Во-вторых, изменения и улучшения в Windows-приложениях сводятся к обновлению только содержимого DLL-библиотек. Уже существующие тексты программ не требуют перекомпиляции.
Интерфейс GDI
Одним из подмножеств API является GDI (Graphics Device Interfase – интерфейс графического устройства). GDI – это та часть Windows, которая обеспечивает поддержку аппаратно-независимой графики. Благодаря функциям GDI Windows-приложение может выполняться на самых различных компьютерах.
Многозадачность в Windows
Как известно, все версии Windows поддерживают многозадачность. В Windows 3.1 имеется только один тип многозадачности – основанный на процессах. В более передовых системах, таких как Windows 9x и Windows NT, поддерживается два типа многозадачности: основанный на процессах и основанный на потоках. Давайте рассмотрим их чуть подробнее.
Процесс – это программа, которая выполняется. При многозадачности такого типа две или более программы могут выполняться параллельно. Конечно, они по очереди используют ресурсы центрального процессора и с технической точки зрения, выполняются неодновременно, но благодаря высокой скорости работы компьютера это практически незаметно.
Поток – это отдельная часть исполняемого кода. Название произошло от понятия “направление протекания процесса”. В многозадачности данного типа отдельные потоки внутри одного процесса также могут выполняться одновременно. Все процессы имеют по крайней мере один поток, но в Windows 9x и Windows NT их может быть несколько.
Отсюда можно сделать вывод, что в Windows 9x и Windows NT допускается существование процессов, две или более частей которых выполняются одновременно. Оказывается, такое предположение верно. Следовательно, при работе в этих операционных системах возможно параллельное выполнение, как программ, так и отдельных частей самих программ. Это позволяет писать очень эффективные программы.
Есть и другое существенное различие между многозадачностями Windows 3.1 и Windows 9x/NT. В Windows 3.1 используется неприоритетная многозадачность. Это означает, что процесс, выполняющийся в данный момент, получает доступ к ресурсам центрального процессора и удерживает их в течение необходимого ему времени. Таким образом, неправильно выполняющаяся программа может захватить все ресурсы процессора и не давать выполняться другим процессам. В отличие от этого в Windows 9x и Windows NT используется приоритетная многозадачность. В этом случае каждому активному потоку предоставляется определенный промежуток времени работы процессора. По истечению данного промежутка управление автоматически передается следующему потоку. Это не дает возможность программам полностью захватывать ресурсы процессора. Интуитивно должно быть понятно, что такой способ более предпочтителен.
Взаимодействие программ и Windows
Во многих операционных системах взаимодействие между системой и программой инициализирует программа. Например, в DOS программа запрашивает разрешение на ввод и вывод данных. Говоря другими словами, не- Windows-программы сами вызывают операционную систему. Обратного процесса не происходит. В Windows все совершенно наоборот: именно система вызывает программу. Это осуществляется следующим образом: программа ожидает получения сообщения от Windows. Когда это происходит, то выполняется некоторое действие. После его завершения программа ожидает следующего сообщения.
Windows может посылать программе сообщения множества различных типов. Например, каждый раз при щелчке мышью в окне активной программы посылается соответствующее сообщение. Другой тип сообщений посылается, когда необходимо обновить содержимое активного окна. Сообщения посылаются также при нажатии клавиши, если программа ожидает ввода с клавиатуры. Необходимо запомнить одно: по отношению к программе сообщения появляются случайным образом. Вот почему Windows-программы похожи на программы обработки прерываний: невозможно предсказать, какое сообщение появиться в следующий момент.
Основы программирования под Windows
Поскольку архитектура Windows-программ основана на принципе сообщений, все эти программы содержат некоторые общие компоненты. Обычно их приходится в явном виде включать в исходный код. Но, к счастью, при использовании библиотеки MFC это происходит автоматически; нет необходимости тратить время и усилия на их написание. Тем не менее, чтобы до конца разобраться, как работает Windows-программа, написанная с использованием MFC, и почему она работает именно так, необходимо в общих чертах понять назначение этих компонентов.
Функция WinMain()
Все Windows-программы начинают выполнение с вызова функции WinMain(). При традиционном методе программирования это нужно делать явно. С использованием библиотеки MFC такая необходимость отпадает, но функция все-таки существует.
Функция окна
Все Windows-программы должны содержать специальную функцию, которая не используется в самой программе, но вызывается самой операционной системой. Эту функцию обычно называют функцией окна, или процедурой окна. Она вызывается Windows, когда системе необходимо передать сообщение в программу. Именно через нее осуществляется взаимодействие между программой и системой. Функция окна передает сообщение в своих аргументах. Согласно терминологии Windows, функции, вызываемые системой, называются функциями обратного вызова. Таким образом, функция окна является функцией обратного вызова.
Помимо принятия сообщения от Windows, функция окна должна вызывать выполнение действия, указанного в сообщении. Конечно, программа не обязана отвечать на все сообщения, посылаемые Windows. Поскольку их могут быть сотни, то большинство сообщений обычно обрабатывается самой системой, а программе достаточно поручить Windows выполнить действия, предусмотренные по умолчанию.
В большинстве Windows-программ задача создания функции окна лежит на программисте. При использовании библиотеки MFC такая функция создается автоматически. В этом заключается одно из преимуществ библиотеки. Но в любом случае, если сообщение получено, то программа должна выполнить некоторое действие. Хотя она может вызывать для этого одну или несколько API-функций, само действие было инициировано Windows. Поэтому именно способ взаимодействия с операционной системой через сообщения диктует общий принцип построения всех программ для Windows, написанных как с использованием MFC, так и без нее.
Цикл сообщений
Как объяснялось выше, Windows взаимодействует с программой, посылая ей сообщения. Все приложения Windows должны организовать так называемый цикл сообщений (обычно внутри функции WinMain()). В этом цикле каждое необработанное сообщение должно быть извлечено из очереди сообщений данного приложения и передано назад в Windows, которая затем вызывает функцию окна программы с данным сообщением в качестве аргумента. В традиционных Windows-программах необходимо самостоятельно создавать и активизировать такой цикл. При использовании MFC это также выполняется автоматически. Однако важно помнить, что цикл сообщений все же существует. Он является неотъемлемой частью любого приложения Windows.
Процесс получения и обработки сообщений может показаться чересчур сложным, но тем не менее ему должны следовать все Windows-программы. К счастью, при использовании библиотеки MFC большинство частных деталей скрыты от программиста, хотя и продолжают неявно присутствовать в программе.
Класс окна
Как будет показано дальше, каждое окно в Windows-приложении характеризуется определенными атрибутами, называемыми классом окна. (Здесь понятие “класс” не идентично используемому в С++. Оно, скорее, означает стиль или тип.) В традиционной программе класс окна должен быть определен и зарегистрирован прежде, чем будет создано окно. При регистрации необходимо сообщить Windows, какой вид должно иметь окно и какую функцию оно выполняет. В то же время регистрация класса окна еще не означает создание самого окна. Для этого требуется выполнить дополнительные действия. При использовании библиотеки MFC создавать собственный класс окна нет необходимости. Вместо этого можно работать с одним из заранее определенных классов, описанных в библиотеке. В этом еще одно ее преимущество.
Специфика программ для Windows
Структура Windows-программ отличается от структуры программ других типов. Это вызвано двумя обстоятельствами: во-первых, способом взаимодействия между программой и Windows, описанным выше; во-вторых, правилами, которым следует подчиняться для создания стандартного интерфейса Windows-приложения (т.е. чтобы сделать программу “похожей “ на Windows-приложение).
Цель Windows – дать человеку, который хотя бы немного знаком с системой, возможность сесть за компьютер и запустить любое приложение без предварительной подготовки. Для этого Windows предоставляет дружественный интерфейс пользователя. Теоретически, если пользователь сумел запустить одно Windows-приложение, то он сумеет запустить и любое другое. Конечно, на практике придется немного потренироваться, чтобы научиться использовать большинство программ с максимальной эффективностью. Однако это связано исключительно с тем, что программа делает, а не с тем, как ею пользоваться. Ведь, фактически, значительная часть кода Windows-приложения предназначена именно для организации интерфейса с пользователем.
Хотя создание удобного интерфейса “под Windows” является основной задачей при написании любой Windows-программы, такой интерфейс не создается автоматически. То есть вполне можно написать программу, в которой элементы интерфейса используются неэффективно. Чтобы этого избежать, необходимо целенаправленно применять методику, описанную в данной книге. Только программы, написанные таким способом, будут выглядеть и работать действительно так, как надлежит Windows-программам.
Чтобы отойти от философии создания традиционного Windows-интерфейса, должны быть достаточно веские основания. Иначе пользователи этой программы будут разочарованы. В общем, если программист собирается писать приложения для Windows, то он должен дать пользователям возможность работать с обычным интерфейсом и руководствоваться стандартной методикой разработки.
Типы данных в Windows
В Windows-программах вообще (и в использующих библиотеку MFC в частности) не слишком широко применяются стандартные типы данных из С или С++, такие как int или char*. Вместо них используются типы данных, определенные в различных библиотечных (header) файлах. Наиболее часто используемыми типами являются HANDLE, HWND, BYTE, WORD, DWORD, UNIT, LONG, BOOL, LPSTR и LPCSTR. Тип HANDLE обозначает 32-разрядное целое, используемое в качестве дескриптора. Есть несколько похожих типов данных, но все они имеют ту же длину, что и HANDLE, и начинаются с литеры Н. Дескриптор – это просто число, определяющее некоторый ресурс. Например, тип HWND обозначает 32-разрядное целое – дескриптор окна. В программах, использующих библиотеку MFC, дескрипторы применяются не столь широко, как это имеет место в традиционных программах. Тип BYTE обозначает 8-разрядное беззнаковое символьное значение, тип WORD – 16-разрядное беззнаковое короткое целое, тип DWORD – беззнаковое длинное целое, тип UNIT - беззнаковое 32-разрядное целое. Тип LONG эквивалентен типу long. Тип BOOL обозначает целое и используется, когда значение может быть либо истинным, либо ложным. Тип LPSTR определяет указатель на строку, а LPCSTR – константный (const) указатель на строку.