Приведем типовые данные схемы рис. 5.8: внутреннее сопротивление источника сигнала Ri=50 Ом, сопротивление нагрузки RL>>Ri, входное сопротивление пробника RP=10 МОм, входная емкость пробника CP=15 пФ. При таких данных элементов схемы она вырождается в последовательный колебательный контур, содержащие сопротивление R≈Ri, индуктивность земляного проводе L≈LG (порядка 100-120 нГ) и емкость C≈CP.
Если на вход такого контура подать идеальный перепад напряжения E, то временная зависимость напряжения на C (и входе осциллографа) будет иметь вид:
(5.5)
Расчеты показывают, что эта зависимость может иметь значительный выброс при больших L и малых R, что и наблюдается на верхней осциллограмме рис. 5.7. При α/δ=1 этот выброс составляет не более 4 % от амплитуды перепада, что является вполне удовлетворительным показателем. Для этого величину L=LG надо выбирать равной:
(5.6)
Например, если C=15 пФ и R=50 Ом, то L=19 нГ. Для уменьшения L до такой величины (с типовой порядка 100-120 нГ для земляного провода длиной 10 см) надо укоротить земляной (возможно и сигнальный) провод до длины менее 2 см. Для этого следует снять насадку с головки пробника и отказаться от использования стандартного земляного провода. Начало пробника в этом случае будет представлено контактной иглой и цилиндрическим земляной полоской (рис. 5.9) с малой индуктивностью.
Рис. 5.9. Головка пробника со снятым наконечником (слева) и переходник к коаксиальному разъему (справа)
Эффективность применяемых для борьбы со «звоном» мер иллюстрирует рис. 5.10. На нем показаны осциллограммы 10-МГц меандра при обычном включении пробника и включении со снятой насадкой и без длинного провода земли. Хорошо видно практически полное устранение явных затухающих колебательных процессов на нижней осциллограмме. Небольшие колебания на вершине связаны с волновыми процессами в соединительном коаксиальном кабеле, который в таких пробниках работает без согласования на выходе, что порождает отражения сигнала.
Рис. 5.10. Осциллограммы 10-МГц меандра при обычном включении пробника (верхняя осциллограмма) и включении со снятой насадкой и без длинного провода земли (нижняя осциллограмма)
Для получения осциллограмм с предельно малыми временами нарастания и «звоном» следует принять меры по предельному уменьшению индуктивности измеряемой цепи: удаление насадки пробника и подключение пробника с помощью иглы и цилиндрической заземляющей вставки. Следует принимать все возможные меры по уменьшению индуктивности цепи, сигнал в которой наблюдается. Важными параметрами системы пробник-осциллограф является время нарастания системы (на уровнях 0,1 и 0.9) и полоса частот или максимальная частота (на уровне спада чувствительности на 3 дб). Если воспользоваться известным значением резонансной частоты контура
, (5.7) то можно выразить значение R через резонансную частоту контура, определяющую предельную частоту тракта отклоняющей системы:
. (5.8) Нетрудно доказать, что время достижения напряжением u(t) значения E амплитуды перепада будет равно:
. (5.10)
Это значение обычно и принимают за время установления пробника с оптимальной переходной характеристикой. Общее время нарастания осциллографа с пробником можно оценить как:
, (5.11) где tосц – время нарастания осциллографа (при подаче сигнала прямо на вход соответствующего канала). Верхняя граничная частота fмакс (она же и полоса частот) определяется как
. (5.12). К примеру, осциллограф имеющий t0=1 нс имеет fмакс=350 МГц. Иногда множитель 0,35 увеличивают до 0,4-0,45, поскольку АЧХ многих современных осциллографов с fмакс>1 ГГц отличается от Гауссовской, для которой характерен множитель 0,35.
Не стоит забывать о еще одном важном параметре пробников – времени задержки сигнала tз. Это время определяется, прежде всего, погонным временем задержки (на 1 м длины кабеля) и длиной кабеля. Оно обычно составляет от единиц до десятков нс. Чтобы задержка не влияла на взаимное расположение осциллограмм на экране многоканального осциллографа нужно использовать во всех каналах пробники одного типа с кабелями одинаковой длины.