русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Частотные характеристики.


Дата добавления: 2015-09-15; просмотров: 736; Нарушение авторских прав


Частотные характеристики колебательного звена имеют следующий вид:

W(jω) = K/(T2·(–jω)2 + 2T ξ ·jω + 1) =

Переход к асимптотической ЛАХ: заменяем истинную ЛАХ – ломаной асимптотической. Выделим области низких и высоких частот и по отдельности рассмотрим поведение ЛАХ в этих областях.

Область низких частот: Tw << 1; т.е. w << 1/T; можно пренебречь выражением T2w2. Получаем: L(w) = 20lgK. Это горизонтальная прямая.

Область высоких частот: Tw >> 1; т.е. w >> 1/T; можно пренебречь 1 в сравнении с выражением T2w2. Получаем L(w) = 20lgK – 40lg(Tw). Это – уравнение прямой с наклоном -40дб/декаду.

 

Рис. 4.5. АФЧХ, ЛАХ и ЛФХ колебательного звена.

Точке пересечения этих прямых соответствует сопрягающая частота ω1 = 1/T.

Принципиальное отличие ЛАХ колебательного звена от ЛАХ инерционных звеньев состоит в том, что в районе сопрягающей частоты ωс = 1/T имеется максимум (так называемый "горб"), из-за чего поведение асимптотической ЛАХ в этой области может существенно отличаться от истинной. Это явление называется резонансом. При этом максимум усиления амплитуды достигается при частоте:

, а .

 

Как видно из приведенного выражения, резонанс в колебательном звене может возникнуть только при малых значениях a( ), т.е. когда рассеяние энергии во внешнюю среду невелико.

Также надо отметить, что сопрягающая частота (ωс), частота собственных колебаний (ωк) и резонансная частота (ωmax) колебательного звена не совпадают. Однако при малых значениях параметра ξ, когда явление резонанса проявляется достаточно сильно, разница между ωс, ωк и ωmax мала, и на практике эти частоты обычно считают равными ω* = 1/T.



<== предыдущая лекция | следующая лекция ==>
Переходная характеристика. | Интегрирующее звено


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.