русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Распределение Пуассона


Дата добавления: 2015-09-15; просмотров: 903; Нарушение авторских прав


Это распределение представляет собой предельный случай биномиального, когда вероятность р очень мала, а число испытаний n велико.
Таким образом, им можно пользоваться при описании частот распределения редких событий, таких, например, как случай обширных наводнений на протяжении долгого периода времени наблюдений.
Дискретная случайная величина Х, которая может принимать только целые неотрицательные значения с вероятностями
, (2.8)
где k – число появления событий в n независимых испытаниях, λ = n· p (среднее число появлений события в nиспытаниях), называется распределенной по закону Пуассона с параметром λ.
В отличие от биномиального распределения здесь случайная величина может принимать бесконечное множество значений, представляющее собой бесконечную последовательность целых чисел 0, 1, 2, 3, … .
Закон Пуассона описывает число событий k, происходящих за одинаковые промежутки времени. При этом полагается, что события появляются независимо друг от друга с постоянной средней интенсивностью, которая характеризуется параметром λ = n·p . Так как для распределения Пуассона вероятность р появления события в каждом испытании мала, то это распределение называют законом распределения редких явлений.
По распределению Пуассона распределено, например число посетителей магазина или банка за определенный промежуток времени, при этом λ – среднее число посетителей за это время.
Предположим, что в среднем в магазин приходит 2,1 покупатель в минуту. Тогда, используя (3.8), получаем, например, вероятности того, что магазин посетят за минуту 1, 4 и 10 посетителей:
, , .
Основанием считать статистическое распределение пуассоновским является близость значений статистических характеристик и S2 (которые являются статистическими приближениями математического ожидания и дисперсии), так как для теоретического распределения Пуассона имеет место: М(Х) = D( X) = λ.





<== предыдущая лекция | следующая лекция ==>
Числовые характеристики случайной величины | Равномерное распределение


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.