русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Туннельный эффект


Дата добавления: 2015-09-15; просмотров: 1070; Нарушение авторских прав


Рис. 1.7. Потенциальный барьер конечной ширины

 

Рассмотрим поведение квантово-механической частицы при прохождении через потенциальный барьер конечной ширины (рис.1.7). Ограничимся рассмотрением одномерной задачи, когда ось x параллельна движению частицы. В каждой из трех областей I, II и III потенциальная энергия микрочастицы постоянна, но при переходе из одной области в другую меняется скачком. Эта задача моделирует многие физически важные явления, например, выход электронов из металлов, распад атомных ядер и др.

Уравнение Шредингера в этом случае будет иметь вид

 

(1.40)

 

где потенциальная энергия

 

,

 

E - полная энергия частицы.

В области I уравнение (1.40) будет иметь вид

 

(1.41)

 

Частное решение уравнения (1.41) будем искать в виде волны, распространяющейся вдоль положительного направления оси x:

 

. (1.42)

 

Подставляя (1.42) в (1.41), получим

 

(1.43)

 

Общее решение уравнения (1.41) для области I представляет собой суперпозицию плоских волн, распространяющихся в противоположных направлениях оси x:

. (1.44)

 

Для области II уравнение Шредингера запишется в виде

 

. (1.45)

 

Общее решение этого уравнения будет иметь вид

 

, (1.46)

 

где волновое число в области II

 

. (1.47)

 

Уравнение Шредингера для микрочастицы в области III будет иметь тот же вид, что и в области I. Общее решение для этой области будет отличаться от решения (1.44) тем, что в области III нет отраженной волны (b3 = 0)

 

. (1.48)

 

Для вычисления коэффициентов a1, b1, a2, b2 и a3 воспользуемся граничными условиями, согласно которым на границах областей волновая функция и ее первая производная должны быть непрерывны.



 

(1.49)

 

Для простоты вычислений можно положить a1=1, т.к. все коэффициенты b1, a2, b2 и a3 можно, не изменяя общности задачи, разделить на a1. Тогда из условий (1.49) получим систему алгебраических уравнений относительно неизвестных b1, a2, b2 и a3

 

(1.50)

 

В случае, когда энергия частицы меньше высоты потенциального барьера (E < U), волновое число k2 будет мнимым и его можно представить в виде k2 = ik, где

 

- действительное.

 

Вероятность обнаружить частицу за потенциальным барьером (в области III) равна квадрату модуля амплитуды, прошедшей в эту область волны: D = |a3|2 = = a3a3* . Величину D называют коэффициентом прозрачности барьера.

Решая систему уравнений (1.50) с учетом граничных условий (1.49), получим следующее выражение для коэффициента прозрачности:

 

. (1.51)

 

Формулу (1.51) можно значительно упростить, если положить

 

,

 

что для реальных ситуаций справедливо, и пренебречь слагаемыми, значительно меньшими, чем экспонента. Тогда

 

. (1.52)

 

Отсюда видно, что проницаемость барьера сильно зависит от ширины барьера d и величины U0 - E.

В случае потенциального барьера произвольной формы (рис. 1.8) проницаемость барьера выражается приближенной формулой

Рис. 1.8. Потенциальный барьер произвольной формы

 

, (1.53)

 

которая, как нетрудно увидеть, является обобщением формулы (1.52).

Таким образом, квантово-механической частице для преодоления потенциального барьера необязательно иметь энергию больше, чем высота барьера. Она как бы проходит через “туннель” (заштрихованная область на рис. 1.8), расположенном на высоте E, где E - полная энергия микрочастицы. В связи с этим рассмотренное явление называют туннельным эффектом.



<== предыдущая лекция | следующая лекция ==>
Квантовый гармонический осциллятор | Водородоподобные атомы


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.3 сек.