русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Объем тела вращения


Дата добавления: 2015-08-31; просмотров: 889; Нарушение авторских прав


а) Пусть на отрезке [a,b] задана непрерывная функция f(х)³0(рис. 4а).

Если криволинейная трапеция, ограниченная кривой у=f(х) и прямыми у=0, х=а и х=b, вращается вокруг оси Ох, то объем тела вращения вычисляется по формуле: . (1)

а) б)

Рисунок 4

Пример. Найти объем тела, образованного вращением вокруг оси Ох фигуры, ограниченной кривой и 0£х£2.

(куб.ед.).

б) Пусть на отрезке [a,b] оси Оу задана непрерывная функция f(у)³0(рис. 4а). Тогда объем полученного при вращении вокруг оси Оу тела вычисляется по формуле: . (2)

Пример. Найти объем тела, образованного вращением вокруг оси Оу фигуры, ограниченной кривой при 1£у£4.

(куб. ед.).

в) Пусть на отрезке [a,b] заданы непрерывные функции f1(х)³0 и f2(х)³0(f1(хf2(х)). Тогда, если фигура, ограниченная линиями у=f1(х), у=f2(х) и прямыми х=а и х=b, вращается вокруг оси Ох, то объем тела вращения вычисляется по формуле: . (3)

Пример. Найти объем тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями и (рис. 5).

Рисунок 5

 



<== предыдущая лекция | следующая лекция ==>
Длина дуги кривой | Гипербола и её каноническое уравнение


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.