При использовании диаграмм Вейча строится прямоугольная таблица (развертка тора), число клеток которой равно числу возможных наборов аргументов. Каждой клетке этой таблицы соответствует набор аргументов и конституента единицы равная единице на этом наборе. Требуется, чтобы в соседних клетках эти конституенты отличались только одним сомножителем.
Диаграммы Вейча для функции 2 и 3 аргументов соответственно.
Для правильной разметки достаточно отводить половину таблицы под аргумент, а другую половину таблицы – под инверсию аргумента, при этом скобки на противоположных сторонах таблицы не должны совпадать! Естественно, что возможно несколько вариантов разметки одной и той же таблицы.
Диаграмма Вейча для функции четырех аргументов.
Все клетки, которые отличаются значением только одной переменной, являются соседними. Для функции пяти и более переменных эти клетки могут быть расположены не рядом. Пример: клетке 3 соответствует конституента единицы . Клеткам 2, 4, 6, 27 – конституенты единицы , , , . Все эти клетки соседние для клетки 3.
При минимизации следует руководствоваться следующими правилами:
1) Строится и размечается прямоугольная таблица, число клеток которой равно числу возможных наборов аргументов.
2) В клетки таблицы заносятся значения булевой функции. При поиске клеточки таблицы аргумент набора равный 1 берется без отрицания, а равный нулю – с отрицанием. В найденную клетку записывают значение функции.
3) Обводят контурами все 1 с соблюдением следующих правил:
- контур должен быть прямоугольным;
- внутри контура не должно быть нулей;
- при обводке следует получить минимальное число контуров максимальной площади;
- число единиц в контуре должно быть равно степени числа 2 (1, 2, 4, 8, 16,…);
- одна и та же клетка, заполненная единицей может входить в несколько контуров;
- при обводке следует учитывать, что самая верхняя и самая нижняя строки таблицы являются соседними. Соседними являются также крайний левый и крайний правый столбцы.
- количество контуров должно быть как можно меньше, а площадь контуров – как можно больше.
4) Записывают минимальное выражение как дизъюнкцию логических произведений, которые описывают контура таблицы. Для поиска логического выражения для контура выясняют от каких аргументов он зависит. Если все 1 контура приписаны к аргументу , то в логическое произведение этот аргумент входит. Если все единицы контура помечены инверсией аргумента, то в произведение вписывается . Если в контуре есть 1, помеченные и 1, помеченные , то в описание контура этот аргумент не входит.
Минимизируемая функция должна быть задана таблицей, либо дизъюнктивной нормальной формой.
Пример: Найти МДНФ функции
В этом таблице три контура. Один из них «разрезан» при развертке тора. Минимальное выражение:
Пример: минимизировать не полностью определенную булеву функцию, заданную таблицей.
В данном примере не полностью определенная функция была доопределена таким образом, чтобы получить минимальное число контуров максимальной площади, что обеспечивает наиболее простое логическое выражение функции. Естественно, что обведенные пустые клетки доопределены единицами, а не обведенные – нулями. Результат: .
В некоторых случаях МДНФ инверсной функции проще, чем МДНФ исходной функции. Пример:
Минимизация булевых функции в базисе Шеффера.
Обычно, при необходимости получения минимального выражения в базисе Пирса или Шеффера функцию минимизируют в булевом базисе, а затем, используя правила де Моргана, преобразуют функцию.
Пример: запишем функции и в базисе Шеффера:
;
.
Однако, ранее рассмотренные свойства операций Шеффера и Пирса позволяют записывать минимальные формы функций в базисах Шеффера и Пирса используя диаграммы Вейча.