русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Интегрирование дифференциальных биномов


Дата добавления: 2015-08-31; просмотров: 2151; Нарушение авторских прав


 

Интегралы типа называются интегралами от дифференциального бинома, где a,b – действительные числа; m, n, и p – рациональные числа.

Как было доказано Чебышевым П.А., интеграл от дифференциального бинома может быть выражен через элементарные функции только в следующих трех случаях:

1) Если р – целое число, то интеграл рационализируется с помощью подстановки , где l - общий знаменатель m и n.

2) Если - целое число, то интеграл рационализируется подстановкой

, где s – знаменатель числа р.

3) Если - целое число, то используется подстановка , где s – знаменатель числа р.

Во всех остальных случаях интегралы типа не выражаются через известные элементарные функции.

Пример. Найти интеграл I = .

Так как дифференциальный бином - ,

то . Поэтому делаем подстановку ,

тогда , . В результате

I = =

= .

Примеры для самостоятельного решения

Найти интеграл

1) . 2) . 3) . 4) . 5) .

6) . 7) . 8) . 9) . 10) .

11) . 12) . 13) . 14) .

15) . 15) . 16) 17)

18) 19) 20)



<== предыдущая лекция | следующая лекция ==>
Интегрирование некоторых иррациональных функций | Вычисление неопределённого интеграла в среде Maxima


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.