русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Вектор индукции электрического поля. Поток векторов Е и D


Дата добавления: 2015-08-31; просмотров: 3010; Нарушение авторских прав


Рассмотрим как меняется значение вектора Е на границе раздела двух сред, например, воздуха (ε 1) и воды (ε = 81). На­пряженность поля в воде уменьшается скачком в 81 раз. Такое по­ведение вектора Е создает определенные неудобства при расчете полей в различных средах. Чтобы избежать этого неудобства вводят новый вектор D – вектор индукции или электрического смещения поля. Связь векторов D и Еимеет вид

D = ε ε0 Е.

Очевидно, для поля точечного заряда электрическое смещение будет равно

Нетрудно увидеть, что электрическое смещение измеряется в Кл/м2, не зависит от свойств и графически изображается линиями анало­гичными линиям напряженности.

Направление силовых линий поля характеризует направле­ние поля в пространстве (силовые линии, конечно, не существуют, их вводят для удобства иллюстрации) или направление вектора на­пряженности поля. С помощью линий напряженности можно характеризовать не только направление, но и величину напряженно­сти поля. Для этого условились прово­дить их с определенной густотой, так, чтобы число линий напряженности, про­низывающих единицу поверхности, пер­пендикулярной линиям напряженности, было пропорционально модулю вектора Е(рис. 78). Тогда число линий, пронизываю­щих элементарную площадку dS, нормаль к которой n образует угол α с вектором Е, равно E dScos α = En dS, где En - составляющая вектора Епо направлению нормали n.

    Рис. 78

 

 

Величину dФЕ= EndS = EdSназывают потоком вектора напряженности че­рез площадкуdS (dS = dS·n).

Для произвольной замкнутой поверхности S поток вектора Ечерез эту поверхность равен

Аналогичное выражение имеет поток вектора электрического сме­щения ФD

.

 

Теорема Остроградского-Гаусса

Эта теорема позволяет определить поток векторов Еи D от любого количества зарядов. Возьмем точечный заряд Q и определим поток вектора Е че­рез шаровую поверхность радиуса r , в центре которой он располо­жен.



Для шаровой поверхности α = 0, cos α = 1, En = E, S = 4 πr2 и

ФE = E · 4 πr2.

Подставляя выражение для Е получим

Таким образом, из каждого точечного заряда выходит поток ФЕ вектора Е равный Q/ ε0 . Обобщая этот вывод на общий случай про­извольного числа точечных зарядов дают формулировку теоремы: полный поток вектора Е через замкнутую поверхность про­извольной формы численно равен алгебраической сумме электрических зарядов, заключенных внутри этой поверхно­сти, поделенной на ε0 , т.е.

Для потока вектора электрического смещения D можно получить аналогичную формулу

поток вектора индукции через замкнутую поверхность равен алгебраической сумме электрических зарядов, охватываемых этой поверхностью.

Если взять замкнутую поверхность, не охватывающую заряд, то каждая линия Е и D будут пересекать эту поверхность дважды – на входе и выходе, поэтому суммарный поток оказывается равным нулю. Здесь необходимо учитывать алгебраическую сумму линий, входящих и выходящих.

 

Применение теоремы Остроградского-Гаусса для расчета элек­трических полей, создаваемых плоскостями, сферой и цилин­дром

1.Сферическая поверхность радиуса R несет на себе заряд Q, равномерно распределенный по поверхности с поверхностной плотностью σ

Возьмем точку А вне сферы на расстоянии r от центра и проведем мысленно сферу радиуса r симметричную заряженной (рис. 79). Ее площадь

S = 4 πr2. Поток вектора Е будет равен

По теореме Остроградского-Гаусса , следовательно, учитывая, что

Q = σ·4 πr2, получим

Рис. 79
Рис. 80

 

 


Для точек, находящихся на поверхности сферы (R = r )

Для точек, находящихся внутри полой сферы (внутри сферы нет за­ряда)

Е = 0.

2.Полая цилиндрическая поверхность радиусом R и длиной l заряжена с постоянной поверхностной плотностью заряда

(Рис. 80). Проведем коаксиальную цилиндрическую поверхность радиуса

r > R.

Поток вектора Е через эту поверхность

По теореме Гаусса

Приравнивая правые части приведенных равенств, получим

.

Если задана линейная плотность заряда цилиндра (или тонкой нити)

то

3. Поле бесконечных плоскостей с поверхностной плотно­стью заряда σ (рис. 81).

Рассмотрим поле, создаваемое бесконечной плоскостью. Из сооб­ражений симметрии вытекает, что напряженность в любой точке поля имеет направление, перпендикулярное к плоскости.

  Рис. 81
В симметричных точках Е будет одинакова по величине и противоположна по направлению.

 

Построим мысленно поверхность цилиндра с основанием ΔS. Тогда через каждое из оснований цилиндра будет выходить поток ФЕ = Е ΔS, а суммарный поток через цилиндрическую поверхность будет равен

ФЕ = 2Е ΔS.

Внутри поверхности заключен заряд Q = σ · ΔS. Согласно теореме Гаусса должно выполняться

откуда

Полученный результат не зависит от высоты выбранного цилиндра. Таким образом напряжённость поля Е на любых расстояниях одинакова по величине. Для двух разноименно заряженных плоскостей с одинаковой по­верхностной плотностью заряда σ по принципу суперпозиции вне про­странства между плоскостями напряжённость поля равна нулю Е = 0, а в пространстве между плос­костями (рис. 82а).

Рис. 82

В случае, если плоскости заряжены одноименными зарядами с одинаковой поверхностной плотностью зарядов, наблюдается об­ратная картина (рис. 82б). В пространстве между плоскостями Е=0, а в пространстве за пределами плоскостей .



<== предыдущая лекция | следующая лекция ==>
Напряженность и потенциал электрического поля диполя | Типы диэлектриков. Явление поляризации


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.009 сек.