русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Определенный интеграл.


Дата добавления: 2015-08-31; просмотров: 699; Нарушение авторских прав


Пусть функция определена и непрерывна (а значит, ограничена) на [a,b].

 

Разобьем отрезок [a,b] на n произвольных частей точками

.

Длину каждого i-го отрезка разбиения назовем

, .

Внутри каждого отрезка разбиения выберем произвольно по точке .

Составим сумму

. (1)

Выражение вида (1) называется интегральной суммой функции f(x) по отрезку [a,b]. Если функция непрерывна на отрезке , то существует предел интегральной суммы при условии, что длина наибольшего из частичных отрезков стремится к нулю, и он не зависит от способа разбиения отрезка на частичные отрезки и от выбора точек в каждом из них.

Опр. Предел интегральной суммы функции f(x) по отрезку [a,b] при стремлении длины наибольшего из частичных отрезков к нулю, называется определенным интегралом от функции f(x) по отрезку [a,b] и обозначается

.

Числа а и в называют нижним и верхним пределами интегрирования. Функция называется интегрируемой на отрезке [a,b]. Любая непрерывная на отрезке функция интегрируема на этом отрезке.

Геометрический смысл определенного интеграла.

 

 

Из рисунка видно, что интегральная сумма равна площади ступенчатой фигуры, образованной из прямоугольников шириной , высотой . При неограниченном измельчении длин отрезков разбиения площадь этой фигуры стремится к площади криволинейной трапеции. Следовательно, определенный интеграл в геометрическом смысле равен площади криволинейной трапеции, заключенной между графиком неотрицательной функции и осью Ох на отрезке [a,b].

 



<== предыдущая лекция | следующая лекция ==>
Массивы элементов управления | Свойства определенного интеграла.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.291 сек.