русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Уравнения Максвелла для электромагнитного поля


Дата добавления: 2015-08-31; просмотров: 842; Нарушение авторских прав


 

Созданная Максвеллом единая макроскопическая теория электромагнитного поля позволила с единой точки зрения не только объяснить электрические и магнитные явления, но предсказать новые, существование которых было впоследствии подтверждено на практике (например, открытие электромагнитных волн).

Обобщая рассмотренные выше положения, приведем уравнения, составляющие основу электромагнитной теории Максвелла.

1. Теорема о циркуляции вектора напряженности магнитного поля:

Это уравнение показывает, что магнитные поля могут создаваться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.

2. Электрическое поле может быть как потенциальным ( ), так и вихревым ( ), поэтому напряженность суммарного поля . Так как циркуляция вектора равна нулю, то циркуляция вектора напряженности суммарного электрического поля

Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и меняющиеся во времени магнитные поля.

Для полного описания явлений в электрических и магнитных полях к уравнениям Максвелла надо добавить теорему Гаусса, а также выражения, связывающие напряженности поля и индукции в однородных средах:

,

где - объемная плотность заряда внутри замкнутой поверхности; - удельная проводимость вещества.

Для стационарных полей (E=const, B=const) уравнения Максвелла принимают вид

т.е. источниками магнитного поля в данном случае являются только токи проводимости, а источниками электрического поля – только электрические заряды. В этом частном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электрические и магнитные поля.

Используя известные из векторного анализа теоремы Стокса и Гаусса (см. Приложение 2), можно представить полную систему уравнений Максвелла в дифференциальной форме (характеризующих поле в каждой точке пространства):



(5.7)

Очевидно, что уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.

Уравнения Максвелла – наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. Они играют в учении об электромагнетизме ту же роль, что и законы Ньютона в механике.

 



<== предыдущая лекция | следующая лекция ==>
Ток смещения | Краткие выводы


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.008 сек.