русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Теорема Гаусса для магнитного поля в вакууме


Дата добавления: 2015-08-31; просмотров: 7914; Нарушение авторских прав


 

Потоком вектора магнитной индукции или магнитным потоком сквозь малую поверхность площадью dS называется скалярная физическая величина, равная

(3.20)

 

где - проекция вектора на направление нормали к площадке dS (рис. 3.11); - вектор, модуль которого равен dS, а направление совпадает с направлением нормали к площадке.

Магнитный поток сквозь произвольную поверхность площадью S равен

 

(3.21)

Если магнитное поле однородно, а поверхность плоская, то как частный случай

(3.22)

 

Если плоская поверхность расположена перпендикулярно вектору , то угол и

 

Отсюда определяется единица магнитного потока вебер (Вб): 1 Вб – это магнитный поток, проходящий сквозь плоскую поверхность площадью 1 м2, расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл, т.е.

1 Вб = 1 Тл·м2.

 

Теорема Гаусса для магнитного поля формулируется следующим образом: поток вектора магнитной индукции сквозь произвольную замкнутую поверхность равен нулю:

 

(3.23)

 

Эта теорема отражает тот факт, что в природе не существует магнитных масс (магнитных зарядов) – источников магнитного поля, на которых начинались бы или заканчивались линии магнитной индукции. Вследствие этого силовые линии магнитного поля не имеют ни начала, ни конца и являются замкнутыми.

Итак, потоки векторов и сквозь замкнутую поверхность в вихревом и потенциальном полях имеют различные выражения:

 

 

Магнитный поток через поверхность, ограниченную замкнутым контуром, называется потокосцеплением этого контура. Например, потокосцепление катушки, состоящей из N витков, магнитные потоки через которые одинаковы и равны Ф, определяется как

 

Потокосцепление контура, обусловленное магнитным полем тока в самом этом контуре, называется потокосцеплением самоиндукции. Потокосцепление контура, обусловленное магнитным полем тока, идущим в другом контуре, называется потокосцеплением взаимной индукции этих двух контуров.



В качестве примера найдем потокосцепление самоиндукции соленоида:

где - магнитный поток через один виток соленоида площадью S.

 

 



<== предыдущая лекция | следующая лекция ==>
Циркуляция вектора индукции магнитного поля в вакууме | Магнитные свойства вещества


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.009 сек.