русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Циркуляция вектора индукции магнитного поля в вакууме


Дата добавления: 2015-08-31; просмотров: 4181; Нарушение авторских прав


Аналогично циркуляции вектора напряженности электростатического поля в магнитном поле вводится понятие циркуляции вектора магнитной индукции по заданному замкнутому контуру:

где - вектор элементарной длины контура, направленный вдоль обхода контура; - составляющая вектора в направлении к касательной к контуру с учетом выбранного обхода контура; - угол между векторами и .

Теорема о циркуляции вектора или закон полного тока для магнитного поля в вакууме формулируется следующим образом: циркуляция вектора по произвольному замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром, т.е.

(3.19)

где n – число проводников с токами, охватываемых контуром l произвольной формы.

Каждый ток учитывается столько раз, сколько раз он охватывается контуром. Положительным считается ток, направление которого связано с направлением обхода контура правилом правого винта; ток противоположного направления считается отрицательным. Например, для системы токов, охваченных контуром l на рис. 3.9, закон полного тока запишется следующим образом:

Выражение (3.19) справедливо только для магнитного поля в вакууме, так как для поля в веществе необходимо дополнительно учитывать молекулярные токи (микротоки).

Убедимся в справедливости теоремы о циркуляции вектора на примере магнитного поля прямого тока I, перпендикулярного плоскости чертежа и направленного «к нам» (рис. 3.10).

Представим себе замкнутый контур l в виде окружности радиуса r. В каждой точке этой окружности вектор одинаков по модулю и направлен по касательной к ней. Следовательно, в данном случае циркуляция вектора будет равна

Согласно выражению (3.19) получим:

или

что полностью согласуется с выражением для индукции магнитного поля прямого тока, выведенным на основе закона Био-Савара-Лапласа.



Сравнивая выражения и для циркуляции векторов и , видно, что между ними существует принципиальное различие: циркуляция вектора напряженности электростатического поля всегда равна нулю, т.е. такое поле является потенциальным; циркуляция вектора отлична от нуля, поэтому магнитное поле является вихревым.

Теорема о циркуляции вектора позволяет находить магнитную индукцию поля без применения закона Био-Савара-Лапласа.

 



<== предыдущая лекция | следующая лекция ==>
Проводник с током в магнитном поле. Закон Ампера | Теорема Гаусса для магнитного поля в вакууме


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.