русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Несобственные интегралы. Интеграл от неограниченной функции.


Дата добавления: 2015-01-16; просмотров: 1817; Нарушение авторских прав


Определение несобственного интеграла от неограниченной функции.
Особенность на левом конце промежутка интегрирования
. Пусть функция f(x) определена на полуинтервале (a, b], интегрируема по любому отрезку , и имеет бесконечный предел при . Несобственным интегралом от f(x) по отрезку [a, b] называется предел . Если этот предел конечен, говорят, что интеграл сходится; если предел не существует или бесконечен, говорят, что интеграл расходится.
Примеры: 17. - интеграл расходится;
18. - интеграл сходится.

Применение формулы Ньютона-Лейбница. Если для функции f(x) на полуинтервале (a, b] существует первообразная F(x), то , и сходимость интеграла определяется наличием или отсутствием конечного предела . Будем писать просто , имея в виду, что если соответствующий предел конечен, то интеграл сходится, в противном случае - расходится.
Примеры: 19. (интеграл сходится).
20. (интеграл расходится).
В следующих дальше случаях неограниченности функции будем поступать аналогично.

Особенность на правом конце промежутка интегрирования. Пусть функция f(x) определена на полуинтервале [a, b), интегрируема по любому отрезку , и имеет бесконечный предел при . Несобственным интегралом от f(x) по отрезку [a, b] называется предел . Если этот предел конечен, говорят, что интеграл сходится; если предел не существует или бесконечен, говорят, что интеграл расходится.

Особенность во внутренней точке промежутка интегрирования. Пусть функция f(x) определена на отрезке [a, b], имеет бесконечный предел при стремлении аргумента к какой-либо внутренней точке c этого отрезка: , интегрируема по любому отрезку, не содержащему точку c. Несобственным интегралом от f(x) по отрезку [a, b] называется . Интеграл сходится, если оба эти пределы существуют и конечны, в противном случае интеграл расходится.



Несколько особенностей на промежутке интегрирования.Этот случай сводится к предыдущим. Пусть, например, функция имеет бесконечные пределы при стремлении аргумента к внутренним точкам c1, c2, c3 отрезка [a, b] (a < c1 < c2 < c3 < b) и правому концу b, и интегрируема по любому отрезку, не содержащему эти точки. Тогда несобственный интеграл определяется как . Здесь d1, d2, d3 - произвольные точки, удовлетворяющие неравенствам a < c1 < d1 <c2 < d2 < c3 < d3 < b.

Пример:
21.

, и интеграл расходится, так как все три предела бесконечны. Решение с применением формулы Ньютона-Лейбница: - расходится, так как первообразная обращается в бесконечность в точке x = -1.

Признаки сравнения для неотрицательных функций. Как и для несобственных интегралов первого рода, для интегралов второго рода вводится понятие абсолютной сходимости, позволяющее в ряде случаев свести исследование сходимости интегралов от произвольных функций к исследованию сходимости интегралов от неотрицательных функции, и рассматриваются признаки сравнения для таких интегралов. Ввиду того, что принципиальная сторона вопроса изучена на случае интегралов первого рода, кратко перечислим основные факты. Будем предполагать, что подынтегральная функция имеет особенность на левом конце промежутка интегрирования.
Признак сравнения. Пусть функции f(x) и g(x) интегрируемы по любому отрезку и при x > aудовлетворяют неравенствам . Тогда:
если сходится интеграл , то сходится интеграл ;
если расходится интеграл , то расходится интеграл
В качестве "стандартного" интеграла, с которым сравнивается данный, и в этом случае обычно берётся интеграл от степенной функции типа . Этот интеграл сходится, если p < 1, и расходится, если :

Признак сравнения в предельной форме. Пусть неотрицательные функции f(x) и g(x) интегрируемы по любому отрезку и пусть существует конечный . Тогда несобственные интегралы и сходятся или расходятся одновременно.
Сравнение интеграла со "стандартным" интегралом в предельной форме даёт правило: если при неотрицательная функция f(x) - бесконечно большая порядка роста ниже первого по сравнению с , то сходится; если f(x) имеет порядок роста единица или выше, то интеграл расходится. Примеры:
22. . Так как при , и интеграл от большей функции сходится, то данный интеграл сходится;
23. . При ~ , p = 1, интеграл расходится;
24. . При ~ , , интеграл расходится;
25. . При ~ , интеграл расходится.
Абсолютная и условная сходимость несобственных интегралов от разрывных функций
определяется аналогично тому, как это было сделано для несобственных интегралов по бесконечному промежутку ( 12.1.4) , а именно: несобственный интеграл от неограниченной функций называется абсолютно сходящимся, если сходится интеграл , и условно сходящимся, если интеграл сходится, а интеграл расходится (если сходится , то тоже обязательно сходится).
Пример: Исследовать на сходимость интеграл:
26. Так как , то исходный интеграл сходится абсолютно.

При отсутствии абсолютной сходимости установить условную сходимость можно с помощью признаков Абеля и Дирихле:

Признак Дирихле. Интеграл сходится, если:
1).функция f(x) непрерывна и имеет ограниченную первообразную на (a, b];
2).функция g(x) непрерывно дифференцируема и монотонна на (a, b], причём .

Признак Абеля. Интеграл сходится, если:
1).функция f(x) непрерывна на (a, b] и интеграл сходится;
2).функция g(x) ограничена, непрерывно дифференцируема и монотонна на (a, b], то есть имеет конечный предел: .

 



<== предыдущая лекция | следующая лекция ==>
Интегрирование по частям определённого интеграла. | Интеграл с бесконечными пределами.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.