1.Найти линию, проходящую через точку М0 (3;5) и обладающей тем свойством, что в любой точке М нормальный вектор MN с концами на оси OY имеет длину 5 ед. и образует острый угол с положительным направлением оси OY
2.Найти линию, проходящую через М0 (1;1), если отрезок любой её нормали, заключённый между осями координат, делится точкой линии в отношении 1:2 (считая от оси ординат)
3.Найти линию, проходящую через М0 (2;1), если отрезок любой её касательной между точкой касания и осью ординат, делится в точке пересечения с осью абсцисс в отношении 1:2 (считая от оси ординат)
4.Найти линию, проходящую через М0 (2;1), если отрезок любой её касательной, заключённой между осями координат, делится в точке касания в отношении 1:2 (считая от оси ординат)
5.Найти линию, проходящую через М0 (1;е), и обладающую тем свойством, что в любой её точке М касательный вектор MN с концом на оси ОХ имеет проекцию на ось ОХ, обратно пропорциональную абсциссе точки М с коэффициентом пропорциональности .
6.Найти линию, проходящую через М0 (1;2), и обладающую тем свойством, что в любой её точке М касательный вектор MN с концом на оси ОY имеет проекцию на ось ОY, равную –1.
7.Найти кривую, для которой площадь треугольника, образованного касательной, ординатой точки касания и осью абсцисс, есть величина постоянная, равная 9.
8.Найти кривую, для которой сумма катетов треугольника, образованного касательной, ординатой точки касания и осью абсцисс, есть величина постоянная, равная 5.
9.Найти кривую, обладающую следующим свойством: отрезок оси абсцисс, отсекаемый касательной и нормалью, проведёнными из произвольной точки кривой, равен 2.
10.Найти кривые, у которых точка пересечения любой касательной с осью абсцисс имеет абсциссу, вдвое меньшую абсциссы точки касания.
11.Найти кривые, обладающие следующим свойством: если через любую точку кривой провести прямые, параллельные осям координат, до встречи с этими осями, то площадь полученного прямоугольника делится кривой в отношении 1:2
12.Найти кривую, у которой точка пересечения любой касательной с осью абсцисс одинаково удалена от точки касания и от начала координат.
13.Найти кривую, у которой расстояние любой касательной от начала координат равно абсциссе точки касания.
14.Найти кривые, у которых площадь трапеции, ограниченной осями координат, касательной и ординатой точки касания, есть величина постоянная, равная 12.
15.Найти кривые, у которых площадь треугольника, ограниченного осью абсцисс, касательной и отрезком от начала координат до точки касания, есть величина постоянная, равная 4.
16.Найти линию, проходящую через точку М0 (9;3) и обладающей тем свойством, что в любой точке М нормальный вектор MN с концом на оси OY имеет длину 15 ед. и образует острый угол с положительным направлением оси OY
17.Найти линию, проходящую через М0 (0;1), если отрезок любой её нормали, заключённый между осями координат, делится точкой линии в отношении 2:3 (считая от оси ординат)
18.Найти линию, проходящую через М0 (2;1), если отрезок любой её касательной между точкой касания и осью ординат, делится в точке пересечения с осью абсцисс в отношении 1:2 (считая от оси ординат)
19.Найти линию, проходящую через М0 (1;3), если отрезок любой её касательной, заключённой между осями координат, делится в точке касания в отношении 2:1 (считая от оси ординат)
20.Найти линию, проходящую через М0 (1;1/е), и обладающую тем свойством, что в любой её точке М касательный вектор MN с концом на оси ОХ имеет проекцию на ось ОХ, обратно пропорциональную абсциссе точки М с коэффициентом пропорциональности k = 2.
21.Найти линию, проходящую через М0 (1;4), и обладающую тем свойством, что в любой её точке М касательный вектор MN с концом на оси ОY имеет проекцию на ось ОY, равную 2.
22.Найти кривую, для которой площадь треугольника, образованного касательной, ординатой точки касания и осью абсцисс, есть величина постоянная, равная 4.
23.Найти кривую, для которой сумма катетов треугольника, образованного касательной, ординатой точки касания и осью абсцисс, есть величина постоянная, равная 7.
24.Найти кривую, обладающую следующим свойством: отрезок оси абсцисс, отсекаемый касательной и нормалью, проведёнными из произвольной точки кривой, равен 6.
25.Найти кривые, у которых точка пересечения любой касательной с осью абсцисс имеет абсциссу, втрое меньшую абсциссы точки касания.
26.Найти кривые, обладающие следующим свойством: если через любую точку кривой провести прямые, параллельные осям координат, до встречи с этими осями, то площадь полученного прямоугольника делится кривой пополам.
27.Кривая проходит через точку (2;4), и обладает тем свойством, что отрезок, отсекаемый на оси абсцисс касательной, проведённой в любой точке кривой равен кубу абсциссы точки касания. Найти уравнение кривой.
28.Найти уравнение кривой, проходящей через точку (1;5),и обладающей следующим свойством: отрезок, отсекаемый на оси ординат любой касательной, равен утроенной абсциссе точки касания.
29.Кривая проходит через точку (1;2), и обладает тем свойством, что произведение углового коэффициента касательной в любой её на сумму координат точки касания равно удвоенной ординате этой точки. Найти уравнение кривой.
30.Найти кривые, у которых площадь трапеции, ограниченной осями координат, касательной и ординатой точки касания, есть величина постоянная, равная 10.
Задача 8. Найти общее решение уравнения:
1. 2.
3. 4.
5. 6.
7. 8.
9. 10.
11. 12.
13. 14.
15. 16.
17. 18.
19. 20.
21. 22.
23. 24.
25. 26.
27. 28.
29. 30.
Примечание: ò sh x dx = ch x + C
ò ch x dx = sh x + C
ò th x dx = ln(ch x) + C
ò cth x dx = ln | sh x| + C
Задача 9. Решить задачу Коши:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
Задача 10. Найти общее решение дифференциального уравнения:
1. 2.
3. 4.
5. 6.
7. 8.
9. 10.
11. 12.
13. 14.
15. 16.
17. 18.
19. 20.
21. 22.
23. 24.
25. 26.
27. 28.
29. 30.
Задача 11. Найти общее решение дифференциального уравнения:
1. 2.
3. 4.
5. 6.
7. 8.
9. 10.
11. 12.
13. 14.
15. 16.
17. 18.
19. 20.
21. 22.
23. 24.
25. 26.
27. 28.
29. 30.
Задача 12. Найти общее решение дифференциального уравнения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
Задача 13. Найти общее решение уравнения:
1. 2.
3. 4.
5. 6.
7. 8.
9. 10.
11. 12.
13. 14.
15. 16.
17. 18.
19. 20.
21. 22.
23. 24.
25. 26.
27. 28.
29. 30.
Задача 14. Решить системы уравнений ( означает и т.д., для облегчения работы в некоторых вариантах указаны корни характеристического уравнения)