русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Виды эмиссии


Дата добавления: 2015-08-31; просмотров: 1083; Нарушение авторских прав


Основным электродом каждого электровакуумного прибора является катод, эмитирующий электроны.

Электронной эмиссией называют процесс выхода электронов из твердых или жидких тел в вакуум или газ. Чтобы вызвать электронную, эмиссию, надо сообщить электронам добавочную энергию, которую называют работой выхода. Она различна для разных металлов и составляет несколько электрон-вольт. У металлов, имеющих большие но сравнению с другими межатомные расстояния, работа выхода меньше. К ним относятся щелочные и щелочноземельные металлы, например цезий, барий, кальций.

Если на поверхности основного металла расположены атомы веществ, отдающие электроны данному металлу, то наблюдается усиление эмиссии. Такие вещества называются активирующими. Можно также уменьшить работу выхода путем покрытия поверхности металла слоем оксида щелочных и щелочноземельных металлов.

Рассмотрим основные виды элект­ронной эмиссии.

Термоэлектронная эмиссия обусловлена нагревом тела, эмитирующего электроны и; широко используется в электронных приборах. С повышением температуры энергия электронов проводимости в проводнике или полупроводнике растет и может оказаться достаточной для совершения работы выхода. Если вылетевшие электроны не отводятся ускоряющим полем от эмитирующей поверхности, то около нее образуется скопление электронов («электронное облачко»). В нем энергии электронов различны и средняя энергия обычно составляет десятые доля: электрон-вольта.

«Электронное облачко» находится в динамическом равновесии. Новые электроны вылетают из нагретого тела, а ранее вылетевшие падают обратно. Это явление напоминает испарение жидкости в замкнутом сосуде.

В приборах с накаленным активированным катодом (например, оксидным) наблюдается значительное усиление термоэлектронной эмиссии под влиянием внешнего ускоряющего поля (эффект Шотки). Если бы катод не был накален, то эмиссия отсутствовала бы. А при высокой температуре и наличии внешнего ускоряющего поля вылетает дополнительно много электронов, которые при отсутствии поля не могли бы выйти. При кратковременном действии сильного поля выход электронов из накаленных оксидных и других активированных катодов очень велик. Такая эмиссия в виде кратковременных импульсов тока используется в некоторых электронных и ионных приборах.



Электростатическая (автоэлектродная) эмиссия представляет собой вырывание электронов сильным электрическим полем.

Электростатическая эмиссия значительно усиливается при шероховато поверхности, что объясняется концентрацией поля у микроскопических выступов этой поверхности. При наличии активирующих, особенно оксидных покрытий; электростатическая эмиссия также усиливается.

Вторичная электронная эмиссия обусловлена ударами электронов о поверхность тела. При этом ударяющие электроны называются первичными. Он проникают в поверхностный слой и отдают свою энергию электронам данного вещества. Некоторые из последних получив значительную энергию, могут выйти из тела. Такие электроны называются вторичными. Вторичная эмиссия обычно возникает при энергии первичных электронов 10—15 эВ и выше. Если энергия первичного электрона достаточно велика, то он может выбить несколько вторичных электронов.

Фотоэлектронная эмиссия, называемая иначе внешним фотоэффектом, представляет собой электронную эмиссию под действием электромагнитного излучения. Эмитирующий электрод при этом - называют фотоэлектронным катодом (фотокатодом), а испускаемые им электроны — фотоэлектронами. Рассмотрим законы и характерные особенности фотоэлектронной эмиссии.

1. Закон Столетова, Фототок Iф, возникающий за счет фотоэлектронной эмиссий, пропорционален световому потоку Ф:

Iф=Ф S

где S— чувствительность фотокатода, выражаемая обычно в микроамперах на люмен.

2. Закон Эйнштейна. Еще в 1905 г.А. Эйнштейн установил, что при внешнем фотоэффекте энергия фотона hv превращается в работу выхода W0 и кинетическую энергию вылетевшего электрона:

hv= W0+0,5m∙v2

где m и v - масса и скорость фотэлектрона; v — частота излучения. h
постоянная Плавка, равная 6,63х 10-34 Джс.

4. Для внешнего фотоэффекта существует так называемая красная, или длинноволновая, граница. Если уменьшать частоту излучения v, то при некоторой частоте v0 фотоэлектронная эмиссия прекращается, так как на этой частоте hv0 =W0 и энергия фотоэлектронов становится равной нулю

5. Для фотоэффекта характерна ма­лая инерционность. Фототок запазды­вает по отношению к излучению, всего лишь на несколько наносекунд.



<== предыдущая лекция | следующая лекция ==>
Классификация электроизмерительных приборов. Погрешности измерений | Проектирование 4-разрядного сумматора.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.007 сек.