русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Электропроводность полупроводников


Дата добавления: 2015-08-31; просмотров: 2337; Нарушение авторских прав


Электропроводность полупроводников можно рассматривать с позиций классической механики, то есть считать, что одновременно измеримы координаты и импульс как электронов, так и дырок, и что можно отслеживать движение каждого электрона и дырки индивидуально. Показать это можно, рассмотрев функцию занятости состояний (4.5) в случае сравнительно узкой запрещенной зоны (см. рис. 4.12). На нем штриховкой отмечены занятые электронами состояния. Проанализировав зависимости, изображенные на рис. 4.12, можно сделать 2 вывода.

Рис. 4.12. Распределение электронов по состояниям в полупроводнике

Первое, поскольку число электронов в зоне проводимости должно равняться числу дырок в валентной зоне, то площади 1 и 2 должны быть приблизительно равны (с малыми поправками на величины эффективных масс электрона и дырки и трехмерное распределение состояний в пространстве волновых векторов). Это достигается, если уровень Ферми совпадает с серединой запрещенной зоны. Это утверждение можно доказать и более строго (см. [1, 2, 3]).

Второе, так как , то формула (4.5) для вычисления вероятности встретить электрон в зоне проводимости (и дырки в валентной зоне) превращается в распределение Больцмана:

 

(4.23)

Это позволяет при описании поведения электронов и дырок использовать классические подходы. Величину удобно отсчитывать от верхнего края валентной зоны, что мы и будем подразумевать при дальнейшем изложении.

Беспримесные полупроводники. Рассмотрим полупроводник кремний, имеющий кристаллическую структуру типа алмаза, в которой каждый атом соединен четырьмя валентными связями с ближайшими соседями. При температуре Т=0 К все связи заполнены электронами, что соответствует полностью заполненной валентной зоне и пустой зоне проводимости, отделенной от валентной зоны по энергии на 1,1 эВ. При увеличении температуры до примерно 200-300 К некоторые электроны из валентной зоны смогут перейти в зону проводимости; это соответствует "уходу" электрона из ковалентной связи 1 (см. рис. 4.13) и превращению его в "свободно перемещающийся" по кристаллу электрон.



Рис. 4.13. Образование и движение электронов и дырок в полупроводниках

На месте опустевшей ковалентной связи образуется дырка - "разорвавшаяся" ковалентная связь, которую покинул электрон. Электрон из соседней связи может "перескочить" в "дырку", тогда дырка как бы переместится на новое место 2 (см. рис. 4.13). Поскольку электроны и дырки образуются парами, то, очевидно, что число дырок в рассмотренном случае равно числу электронов.

Один из свободных электронов может занять одну из дырок; в результате они оба исчезнут, такой процесс называется рекомбинацией электрона и дырки (см. рис. 4.13 (3)). Вероятность рекомбинации пропорциональна произведению концентраций электронов и дырок. Вероятность зарождения пары электрон - дырка зависит от температуры полупроводника (а также от частоты и интенсивности излучения, падающего на полупроводник). В состоянии равновесия устанавливается равенство чисел скорости зарождения и рекомбинации электронов и дырок и связанные с ними концентрации последних, зависящие от температуры полупроводника, а также от частоты и интенсивности падающих на полупроводник излучений.

Можно получить зависимость проводимости полупроводника от температуры. Вероятность образования пары электрон - дырка с минимальной энергией (очевидно, такая пара получается если электрон проводимости обладает наименьшей энергией, а дырка - наибольшей (см. рис. 4.14)) будет максимальной согласно (4.23). Именно такие пары в основном образуются при температуре порядка и дают основной вклад в концентрацию свободных носителей заряда.

Рис. 4.14. Энергетические уровни в беспримесном полупроводнике

Тогда можно приближенно записать, что:

 

. (4.24)

Поскольку проводимость пропорциональна концентрации свободных носителей заряда, аналогичную формулу можно записать и для проводимости полупроводника:

 

. (4.25)

Этот закон подтверждается экспериментально (см. рис. 4.15). Тангенс наклона прямой линии на этом рисунке связан с шириной запрещенной зоны беспримесного полупроводника.

Рис. 4.15. Зависимость логарифма проводимости беспримесного полупроводника от температуры

Подвижность носителя электрического тока. Итак, ток в полупроводнике формируется свободными электронами и дырками, концентрации которых обозначим как и . Тогда плотность тока в полупроводнике, помещенном в поле , может быть записана как:

 

. (4.26)

Здесь через и обозначены дрейфовые скорости электронов и дырок. Сопоставляя закон Ома в дифференциальной форме с формулами (4.26) и (4.19), получаем, что и пропорциональны . Удобно ввести новую величину - подвижность носителя электрического тока с помощью соотношения:

 

. (4.27)

Из этого соотношения видно, что подвижность численно равна дрейфовой скорости движения носителя в поле единичной величины.

Понятие подвижности носителей - очень удобное в физике полупроводников понятие. Запись многих сложных соотношений теории полупроводников с помощью понятия подвижность сильно упрощаются (см. к примеру, раздел, посвященный эффекту Холла). В частности соотношение (4.26) можно переписать в виде:

 

. (4.28)

Обычно подвижность электронов значительно выше, чем подвижность дырок, поскольку перемещение дырки - более сложный процесс, связанный с перескоками многих электронов.

Примесная проводимость полупроводников. Некоторые примеси даже при малых их концентрациях очень сильно изменяют проводимость полупроводника. Такие примеси приводят к появлению избыточного количества или свободных электронов, или дырок. Их называют соответственно донорными примесями (отдающими электроны) илиакцепторными примесями (забирающими электроны).

Получившийся после добавления донорных примесей полупроводник называют донорным полупроводником. Его также называют электронным (так как в нем - избыток свободных электронов) или же полупроводником -типа: от слова - отрицательный, поскольку в нем - избыток отрицательных свободных носителей заряда.

Получившийся после добавления акцепторных примесей полупроводник называют акцепторным полупроводником. Его также называют дырочным (так как в нем - избыток свободных дырок) или же полупроводником -типа: от слова - положительный, поскольку в нем - избыток положительных свободных носителей заряда.

Донорные полупроводники - получаются при добавлении в полупроводник элементов, от которых легко "отрывается" электрон. Например, если к четырехвалентному кремнию (или германию) добавить пятивалентный мышьяк (или фосфор), то последний использует свои 4 валентных электрона для создания 4 валентных связей в кристаллической решетке, а пятый электрон окажется "лишним", такой электрон легко отрывается от атома и начинает относительно свободно перемещаться по кристаллу. В таком случае в кристалле образуется избыток свободных электронов. Не следует забывать и об образовании пар электрон - дырка, как это рассматривалось в случае беспримесного полупроводника, однако для этого требуется значительно большая энергия, и поэтому вероятность такого процесса при комнатных температурах достаточно мала в соответствии с (4.23). Электроны в донорном полупроводнике принято называть основными носителями заряда, а дырки - неосновными носителями заряда.

На языке зонной теории появление "легко отрывающихся" электронов соответствует появлению в запрещенной зоне донорных уровней вблизи нижнего края зоны проводимости (см. рис. 4.16). Электрону для перехода в зону проводимости с такого уровня требуется меньше энергии, чем для перехода из валентной зоны (см. рис. 4.16), чему соответствует уход электрона из обычной ковалентной связи.

Рис. 4.16. Схема электронных состояний донорного полупроводника

При температурах порядка комнатной основной вклад в проводимость полупроводника будут давать электроны, перешедшие в зону проводимости с донорных уровней, вероятность же перехода электронов из валентной зоны будет очень мала.

При увеличении температуры значительная часть электронов с малого числа донорных уровней перейдет в зону проводимости, кроме того, вероятность перехода электронов из валентной зоны в зону проводимости станет значительной. Поскольку число уровней в валентной зоне много больше, чем число примесных уровней, то с ростом температуры различие увеличивающихся концентраций электронов и дырок станет менее заметно; они будут отличаться на малую величину - концентрацию донорных уровней. Донорный характер полупроводника при этом будет все менее и менее выражен. И, наконец, при еще большем повышении температуры концентрация носителей заряда в полупроводнике станет очень большой, и донорный полупроводник станет аналогичен беспримесному полупроводнику, а затем - проводнику, зона проводимости которого содержит много электронов.

Можно показать [1, 2, 3], что уровень Ферми в донорном полупроводнике смещается вверх по шкале энергии, причем это смещение больше при низких температурах, когда концентрация свободных электронов значительно превышает число дырок. При повышении температуры, когда донорный характер полупроводника становится все менее и менее выраженным, уровень Ферми смещается в среднюю часть запрещенной зоны, как в беспримесном полупроводнике.

Акцепторные полупроводники - получаются при добавлении в полупроводник элементов, которые легко "отбирают" электрон у атомов полупроводника. Например, если к четырехвалентному кремнию (или германию) добавить трехвалентный индий, то последний использует свои три валентных электрона для создания трех валентных связей в кристаллической решетке, а четвертая связь окажется без электрона. Электрон из соседней связи может перейти на это пустое место, и тогда в кристалле получится дырка (см. рис. 4.13). В таком случае в кристалле образуется избыток дырок. Не следует забывать и об образовании пар электрон - дырка, как это рассматривалось в случае беспримесного полупроводника, однако вероятность этого процесса при комнатных температурах достаточно мала. Дырки в акцепторном полупроводнике принято называть основными носителями, а электроны - неосновными.

На языке зонной теории переход электрона из полноценной ковалентной связи в связь с недостающим электроном соответствует появлению в запрещенной зоне акцепторных уровней вблизи нижнего края зоны проводимости (см. рис. 4.17). Электрону для такого перехода из валентной зоны на акцепторный уровень (при этом электрон просто переходит из одной ковалентной связи в почти такую же другую связь) требуется меньше энергии, чем для перехода из валентной зоны в зону проводимости (см. рис. 4.17), то есть для "полного ухода" электрона из ковалентной связи.

Рис. 4.17. Схема электронных состояний акцепторного полупроводника

При температурах порядка комнатной основной вклад в проводимость полупроводника будут давать дырки, образовавшиеся в валентной зоне после перехода валентных электронов на акцепторные уровни, вероятность же перехода электронов из валентной зоны в зону проводимости будет очень мала.

При увеличении температуры значительная часть малого числа акцепторных уровней окажется занятой электронами. Кроме того, вероятность перехода электронов из валентной зоны в зону проводимости станет значительной. Поскольку число уровней в валентной зоне много больше, чем число примесных уровней, то с ростом температуры различие увеличивающихся концентраций электронов и дырок станет менее заметно, так как они отличаются на малую величину - концентрацию акцепторных уровней. Акцепторный характер полупроводника при этом будет все менее и менее выражен. И, наконец, при еще большем повышении температуры концентрация носителей заряда в полупроводнике станет очень большой, и акцепторный полупроводник станет аналогичен сначала беспримесному полупроводнику, а затем - проводнику.

Можно показать [1, 2, 3], что уровень Ферми в акцепторном полупроводнике смещается вниз по шкале энергии, причем это смещение больше при низких температурах, когда концентрация дырок значительно превышает концентрацию свободных электронов. При повышении температуры, когда акцепторный характер полупроводника становится все менее и менее выраженным, уровень Ферми смещается в среднюю часть запрещенной зоны, как в беспримесном полупроводнике.

Итак, при постепенном увеличении температуры наблюдается постепенное превращение как донорного, так и акцепторного полупроводника в полупроводник аналогичный беспримесному, а затем - в полупроводник аналогичный по проводимости проводнику. В этом заключается причина отказа при перегреве полупроводниковых устройств, состоящих из нескольких областей полупроводников донорного и акцепторного типов. При увеличении температуры различия между областями постепенно пропадает и в итоге полупроводниковое устройство превращается в монолитный кусок хорошо проводящего ток полупроводника.

Фотопроводимость полупроводников. Если на полупроводник падает поток квантов электромагнитных излучений с энергией большей ширины запрещенной зоны , то возможен внутренний фотоэффект в полупроводнике - переход электронов, поглотивших квант излучения, из валентной зоны в зону проводимости. Из-за этого количество электронов в зоне проводимости и дырок в валентной зоне и связанная с ними проводимость полупроводника возрастают. Явление увеличения проводимости полупроводника под влиянием падающих излучений получило название фотопроводимость полупроводников.

Это явление очень важно для физики, так как позволяет определить две важных характеристики полупроводника - ширину запрещенной зоны и среднее время жизни носителей в полупроводнике.

Ширину запрещенной зоны вычисляют по найденной экспериментально красной границе внутреннего фотоэффекта - максимальной длине волны излучения , при которой возможен внутренний фотоэффект. Для этого используют соотношение: (см. задачу 4.4).

Среднее время жизни носителей в полупроводнике вычисляют по найденной экспериментально зависимости проводимости полупроводника при облучении его светом (см. рис. 4.18). Рассмотрим беспримесный полупроводник при комнатной температуре. При отсутствии освещения в нем будет равновесная концентрация носителей заряда ; с ней связанна проводимость (см. рис. 4.18).

Рис. 4.18. Зависимость равновесной концентрации носителей заряда и связанной с ней проводимости от освещения полупроводника

При освещении полупроводника будут нарождаться пары электрон - дырка. Этот процесс скоро уравновесится рекомбинацией электронов и дырок, вероятность которой растет при увеличении концентраций последних. Через некоторое время скорость рекомбинации сравняется со скоростью нарождения электронов и дырок. При этом в полупроводнике установится новое значение концентрации электронов и дырок: (см. рис. 4.18). Если теперь свет мгновенно выключить, то концентрации электронов и дырок постепенно из-за рекомбинации вернутся к значению , которое наблюдалось до освещения полупроводника (см. рис. 4.18). Аналогичным образом будет изменяться проводимость полупроводника. Время , за которое добавка к проводимости уменьшится приблизительно в 2,7-раза (см. рис. 4.18), называют средним временем жизни электронов и дырок в полупроводнике. Такие быстрые изменения проводимости удобно наблюдать на экране осциллографа, обеспечив периодическое включение - выключение потока света и синхронный запуск развертки осциллографа (см. также задачу 4.5).

Явление фотопроводимости полупроводников очень важно для техники, так как позволяет конструировать полупроводниковые датчики, как света, так и других видов электромагнитных излучений.

В настоящее время полупроводниковые датчики используются как для измерения освещенности, так и для пересчета импульсов светового потока, например в устройствах регистрации числа оборотов и скорости вращения валов машин, перемещения узлов станков, чтения информации, записанной на компакт-дисках и т.д. Остановимся подробнее на последних.

Устройства чтения компакт-дисков измеряют с помощью полупроводникового светового датчика изменения интенсивности отражения лазерного луча, сфокуссированного на поверхности вращающегося компакт-диска. Они должны обеспечивать высокую скорость чтения информации - порядка 108 импульсов в секунду, что возможно при очень малых временах жизни электронов и дырок в полупроводниковом материале датчика (примерно 10-8 сек).

Полупроводниковые датчики используются и для измерения интенсивности ионизирующих излучений. В них происходят процессы аналогичные рассмотренным выше; отличие - в том, что электрон, выбитый из зоны проводимости, обладает очень большой энергией, которой достаточно для проведения ионизации многих других атомов полупроводника, что приводит к увеличению концентрации электронов и дырок и, как следствие, к увеличению проводимости полупроводника.

Следует заметить, что увеличение температуры, освещенности и радиационного облучения полупроводника приводят к увеличению его проводимости. Поэтому при использовании полупроводниковых датчиков для измерения одной из трех перечисленных величин стремятся уменьшить или хотя бы стабилизировать влияние двух других. Например, полупроводниковые датчики - измерители температуры тщательно защищают от света и радиации. Чувствительные полупроводниковые датчики светового и инфракрасного излучения охлаждают до температуры порядка 200 К, а иногда и ниже, чтобы уменьшить влияние проводимости, обусловленной тепловым возбуждением электронов и тем самым увеличить чувствительность к слабым потокам излучения. Если такой датчик не охлаждать, то малое число носителей заряда, образовавшееся в нем из-за воздействия излучения, будет незаметным на фоне большого числа носителей заряда, образовавшихся при тепловом движении.

Эффект Холла в полупроводниках. Рассмотрим образец полупроводника в виде прямоугольного параллелепипеда (см. рис. 4.19), вдоль стороны которого течет ток плотности , а вдоль стороны которого направлен вектор магнитной индукции . Эффект Холла состоит в появлении разности потенциалов, называемой холловской, между точками верхней и нижней граней, расположенных друг над другом (темные кружочки 1 и 2 на рис. 4.19). Этому эффекту дают изложенное ниже объяснение.

Рис. 4.19. Появление поверхностных зарядов и холловской напряженности электрического поля в акцепторном полупроводнике

Рассмотрим сначала акцепторный полупроводник. С плотностью тока связана дрейфовая скорость движения дырок - носителей заряда. На заряд , движущийся в магнитном поле, как известно из электродинамики, действует сила Лоренца , направленная на рис. 4.19 вверх:

 

(4.29)

Дырки под воздействием начнут двигаться вверх и накапливаться на верхней грани, на верхней грани будет формироваться избыток положительного заряда, а на нижней - избыток отрицательного заряда. Эти заряды создадут электрическое поле , которое препятствует движению дырок вверх, действуя на них силой . Когда заряда накопится столько, что сила уравновесит силу Лоренца, процесс накопления заряда прекратится и установится величина , отвечающая данным значениям и . Условие равновесия примет вид: . Заменив в этом соотношении на из (4.28), получим более удобное для проведения экспериментов соотношение:

. (4.30)

Все величины, входящие в эту формулу, могут быть измерены. Величина называется постоянной Холла. Аналогичную формулу можно получить и для донорного полупроводника. Заметим, что знак совпадает со знаком носителей заряда.

Использование соотношения (4.30) позволяет сравнительно легко измерять такие важные характеристики полупроводника как концентрацию носителей заряда и их знак (см. задачу 4.6).

В технике эффект Холла используется для измерения величины магнитной индукции . Для этого конструируют датчик - образец полупроводника подобный изображенному на рис. 4.19. Измеряют величины и ; затем, зная постоянную материала датчика, вычисляют величину . Процесс измерения легко может быть автоматизирован, и прибор сразу будет выдавать значение .

Рассмотрим теперь эффект Холла в случае сопоставимых значений концентраций электронов и дырок в полупроводнике. Пусть в образце полупроводника в виде прямоугольного параллелепипеда (см. рис. 4.20) концентрации соответственно электронов и дырок равны и , а подвижности соответственно электронов и дырок равны и .

Рис. 4.20. Появление холловской напряженности электрического поля и поверхностных зарядов в полупроводнике с сопоставимыми концентрациями электронов и дырок

Вектор плотности тока , создаваемого электронами и дырками под воздействием электрического поля , пусть направлен вдоль стороны и задается согласно (4.28) выражением:

 

(4.31)

Вдоль стороны от нас направлен вектор магнитной индукции , со стороны которого как на электрон, так и на дырку будут действовать силы Лоренца, направленные вверх. Под их воздействием электроны и дырки начнут двигаться вверх и накапливаться на верхней грани. Здесь они будут рекомбинировать. Пусть для определенности дырок будет приходить к верхней грани больше, чем электронов. Тогда на верхней грани будет постепенно накапливаться избыток дырок, а на нижней - избыток электронов. Тогда появится холловская напряженность электрического поля , направленная вниз. Это поле будет препятствовать дыркам и помогать электронам двигаться вверх. Через некоторое время установится такая , при которой плотности потока электронов и дырок вверх сравняются, и прекратятся накопление заряда на верхней грани и рост . Условие равновесия можно записать в проекции на вертикальное направление так:

 

. (4.32)

С учетом (4.27) и (4.28), получим соотношение для модулей векторов:

 

. (4.33)

Из этого соотношения можно найти отношение как:

 

. (4.34)

Из него можно, используя (4.29) и (4.30), выразить значение :

 

. (4.35)

Соотношения (4.34) и (4.35) упрощаются если полупроводник - беспримесный, у которого :

 

(4.36)

В частности, для беспримесного полупроводника по (4.36) можно найти разность подвижностей электронов и дырок.

Задачи к разделу 4.4.

4.4. Определить ширину запрещенной зоны беспримесного полупроводника если красная граница фотоэффекта этого полупроводника равна . Получить формулу для температурного коэффициента сопротивления беспримесного полупроводника , ширина запрещенной зоны этого полупроводника .

Указание. Следует воспользоваться формулами , и (4.25).

4.5. Оценить среднее время жизни пар электрон-дырка в беспримесном полупроводнике если его проводимость при освещении равна ,через время после выключения света равна ,а через очень большой промежуток времени после выключения света равна . Считать, что вклад в проводимость, обусловленный излучением, убывает при выключении света экспоненциально (см. рис. 4.18).

Указание. Следует воспользоваться рисунком 4.18.

4.6. Определить постоянную Холла, подвижность и концентрацию носителей заряда в акцепторном полупроводнике, если в образце полупроводника, изображенном на рис. 4.19 размеры которого заданы, ток протекающий через образец равен , напряжение вызывающее ток, равно , холловская ЭДС мВ, а индукция магнитного поля 0,5 Тл.

Указание. Следует воспользоваться формулами (4.30).

 

11.5
Электронно-дырочный переход

·

Рис. 1 Р — n-переход (схема)

·

Рис. 2 Вольтамперная характеристика р — n-перехода

Электронно-дырочный переход (p — n-переход), область полупроводника, в которой имеет место пространственное изменение типа проводимости (от электронной n к дырочной p).Поскольку в р-области Э.-д. п. концентрация дырок гораздо выше, чем в n-области, дырки из p-области стремятся диффундировать в электронную область. Электроны диффундируют в р-область. Однако после ухода дырок в p-области остаются отрицательно заряженные акцепторные атомы, а после ухода электронов в n-области — положительно заряженные донорные атомы. Т. к. акцепторные и донорные атомы неподвижны, то в области Э.-л. п. образуется двойной слой пространственного заряда — отрицательные заряды в р-области и положительные заряды в n -области (рис. 1). Возникающее при этом контактное электрическое поле по величине и направлению таково, что оно противодействует диффузии свободных носителей тока через Э.-д. п.; в условиях теплового равновесия при отсутствии внешнего электрического напряжения полный ток через Э.-д. п. равен нулю. Т. о., в Э.-д. п. существует динамическое равновесие, при котором небольшой ток, создаваемый неосновными носителями (электронами в р-области и дырками в n-области), течёт к Э.-д. п. и проходит через него под действием контактного поля, а равный по величине ток, создаваемый диффузией основных носителей (электронами в n-области и дырками в р-области), протекает через Э.-д. п. в обратном направлении. При этом основным носителям приходится преодолевать контактное поле (потенциальный барьер).Разность потенциалов, возникающая между p- и n-областями из-за наличия контактного поля (контактная разность потенциалов или высота потенциального барьера), обычно составляет десятые доли вольта.

Внешнее электрическое поле изменяет высоту потенциального барьера и нарушает равновесие потоков носителей тока через него. Если положит. потенциал приложен к р-области, то внешнее поле направлено против контактного, т. е. потенциальный барьер понижается (прямое смещение). В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть потенциальный барьер. Концентрация неосновных носителей по обе стороны Э.-д. п. увеличивается (инжекция неосновных носителей), одновременно в р- и n-области через контакты входят равные количества основных носителей, вызывающих нейтрализацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через Э.-д. п. При повышении приложенного напряжения этот ток экспоненциально возрастает. Наоборот, приложение положит, потенциала к и-области (обратное смещение) приводит к повышению потенциального барьера. При этом диффузия основных носителей через Э.-д. п. становится пренебрежимо малой.

В то же время потоки неосновных носителей не изменяются, поскольку для них барьера не существует. Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через Э.-д. п. течёт ток Is (ток насыщения), который обычно мал и почти не зависит от приложенного напряжения. Т. о., зависимость тока 1 через Э.-д. п. от приложенного напряжения U (вольтамперная характеристика) обладает резко выраженной нелинейностью (рис. 2). При изменении знака напряжения ток через Э.-д. п. может меняться в 105—106 раз. Благодаря этому Э.-д. п. является вентильным устройством, пригодным для выпрямления переменных токов (см. Полупроводниковый диод). Зависимость сопротивления Э.-д. п. от U позволяет использовать Э.-д. п. в качестве регулируемого сопротивления (варистора).

При подаче на Э.-д. п. достаточно высокого обратного смещения U = Uпр возникает электрический пробой, при котором протекает большой обратный ток (рис. 2). Различают лавинный пробой, когда на длине свободного пробега в области объёмного заряда носитель приобретает энергию, достаточную для ионизации кристаллической решётки, туннельный (зинеровский) пробой, возникающий при туннелировании носителей сквозь барьер (см. Туннельный эффект), и тепловой пробой, связанный с недостаточностью теплоотвода от Э.-д. п., работающего в режиме больших токов.

От приложенного напряжения зависит не только проводимость, но и ёмкость Э.-д. п. Действительно, повышение потенциального барьера при обратном смещении означает увеличение разности потенциалов между п- и р-областями полупроводника и, отсюда, увеличение их объёмных зарядов. Поскольку объёмные заряды являются неподвижными и связанными с кристаллической решёткой ионами доноров и акцепторов, увеличение объёмного заряда может быть обусловлено только расширением его области и, следовательно, уменьшением ёмкости Э.-д. п. При прямом смещении к ёмкости слоя объёмного заряда (называется также зарядной ёмкостью) добавляется т. н. диффузионная ёмкость, обусловленная тем, что увеличение напряжения на Э.-д. п. приводит к увеличению концентрации неосновных носителей, т. е. к изменению заряда. Зависимость ёмкости от приложенного напряжения позволяет использовать Э.-д. п. в качестве варактора — прибора, ёмкостью которого можно управлять, меняя напряжение смещения (см. Параметрический полупроводниковый диод).

Помимо использования нелинейности вольтамперной характеристики и зависимости ёмкости от напряжения, Э.-д. п. находит многообразные применения, основанные на зависимости контактной разности потенциалов и тока насыщения от концентрации неосновных носителей. Их концентрация существенно изменяется при различных внешних воздействиях — тепловых, механических, оптических и др. На этом основаны различного рода датчики: температуры, давления, ионизирующих излучений и т. д. Э.-д. п. используется также для преобразования световой энергии в электрическую (см. Солнечная батарея).

Э.-д. п. являются основой разного рода полупроводниковых диодов, а также входят в качестве составных элементов в более сложные полупроводниковые приборы — транзисторы, тиристоры и т. д. Инжекция и последующая рекомбинация неосновных носителей в Э.-д. п. используются в светоизлучающих диодах и инжекционных лазерах.

Э.-д. п. может быть создан различными путями: 1) в объёме одного и того же полупроводникового материала, легированного в одной части донорной примесью (р-область), а в другой — акцепторной (n-область); 2) на границе двух различных полупроводников с разными типами проводимости (см. Полупроводниковый гетеропереход); 3) вблизи контакта полупроводника с металлом, если ширина запрещенной зоны полупроводника меньше разности работ выходаполупроводника и металла; 4) приложением к поверхности полупроводника с электронной (дырочной) проводимостью достаточно большого отрицательного (положительного) потенциала, под действием которого у поверхности образуется область с дырочной (электронной) проводимостью (инверсный слой).

Если Э.-д. п. получают вплавлением примесей в монокристаллический полупроводник (например, акцепторной примеси в кристалл с проводимостью n-типа), то переход от n- к р-области происходит скачком (резкий Э.-д. п.). Если используется диффузия примесей, то образуется плавный Э.-д. п. Плавные Э.-д. п. можно получать также выращиванием монокристалла из расплава, в котором постепенно изменяют содержание и характер примесей. Получил распространение метод ионного внедрения примесных атомов, позволяющий создавать Э.-д. п. заданного профиля.

Лит.: Стильбанс Л. С., Физика полупроводников, М., 1967; Пикус Г. Е., Основы теории полупроводниковых приборов, М., 1965; Федотов Я. А., Основы физики полупроводниковых приборов, 2 изд., М., 1970; СВЧ-полупроводниковые приборы и их применение, пер. с англ., М., 1972; Бонч-Бруевич В. Л., Калашников С. Г., Физика полупроводников, М., 1977.

11.6Полупроводниковый диод

·

Рис. 1. Полупроводниковый диод с р-n — переходом (структурная схема)

·

Рис. 2. Вольтамперная характеристика полупроводникового диода с р-n — переходом

·

Рис. 3. Полупроводниковый диода с р-n — переходом

Из 5

Полупроводниковый диод,двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие "П. д." объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение. Система классификации П. д. соответствует общей системе классификации полупроводниковых приборов. В наиболее распространённом классе электропреобразовательных П. д. различают: выпрямительные диоды, импульсные диоды, стабилитроны, диоды СВЧ (в т. ч. видеодетекторы, смесительные, параметрические, усилительные и генераторные, умножительные, переключательные). Среди оптоэлектронных П. д. выделяют фотодиоды, светоизлучающие диоды и ПП квантовые генераторы.

Наиболее многочисленны П. д., действие которых основано на использовании свойств электронно-дырочного перехода (р—n-перехода). Если к р—n-переходу диода (рис. 1) приложить напряжение в прямом направлении (т. н. прямое смещение), т. е. подать на его р-область положительный потенциал, то потенциальный барьер, соответствующий переходу, понижается и начинается интенсивная инжекция дырок из р-области в n-область и электронов из n-области в р-область — течёт большой прямой ток (рис. 2). Если приложить напряжение в обратном направлении (обратное смещение), то потенциальный барьер повышается и через р—n-переход протекает лишь очень малый ток неосновных носителей заряда (обратный ток). На рис. 3приведена эквивалентная схема такого П. д.

На резкой несимметричности вольтамперной характеристики (ВАХ) основана работа выпрямительных (силовых) диодов. Для выпрямительных устройств и др. сильноточных электрических цепей выпускаются выпрямительные П. д., имеющие допустимый выпрямленный ток Iв до 300 аи максимальное допустимое обратное напряжение U*оброт 20—30 в до 1—2 кв. П. д. аналогичного применения для слаботочных цепей имеют Iв < 0,1 а и называются универсальными. При напряжениях, превышающих U*o6p, ток резко возрастает, и возникает необратимый (тепловой) пробой р—n-перехода, приводящий к выходу П. д. из строя. С целью повышения U*обрдо нескольких десятков кв используют выпрямительные столбы, в которых несколько одинаковых выпрямительных П. д. соединены последовательно и смонтированы в общем пластмассовом корпусе. Инерционность выпрямительных диодов, обусловленная тем, что время жизни инжектированных дырок (см. Полупроводники) составляет > 10-5—10-4 сек, ограничивает частотный предел их применения (обычно областью частот 50—2000 гц).

Использование специальных технологических приёмов (главным образом легирование германия и кремния золотом) позволило снизить время переключения до 10-710-10сек и создать быстродействующие импульсные П. д., используемые, наряду с диодными матрицами, главным образом в слаботочных сигнальных цепях ЭВМ.

При невысоких пробивных напряжениях обычно развивается не тепловой, а обратимый лавинный пробой р—n-перехода — резкое нарастание тока при почти неизменном напряжении, называется напряжением стабилизации U. На использовании такого пробоя основана работа полупроводниковых стабилитронов. Стабилитроны общего назначения с Ucт от 3—5 в до 100—150 в применяют главным образом в стабилизаторах и ограничителях постоянного и импульсного напряжения; прецизионные стабилитроны, у которых встраиванием компенсирующих элементов достигается исключительно высокая температурная стабильность U (до 1×10-5— 5×10-6 К-1), — в качестве источников эталонного и опорного напряжений.

В предпробойной области обратный ток диода подвержен очень значительным флуктуациям; это свойство р—n-перехода используют для создания генераторов шума. Инерционность развития лавинного пробоя в р—n-переходе (характеризующаяся временем 10-9—10-10 сек)обусловливает сдвиг фаз между током и напряжением в диоде, вызывая (при соответствующей схеме включения его в электрическую цепь) генерирование СВЧ колебаний. Это свойство успешно используют в лавинно-пролётных полупроводниковых диодах, позволяющих осуществлять генераторы с частотами до 150Ггц.

Для детектирования и преобразования электрических сигналов в области СВЧ используют смесительные П. д. и видеодетекторы, в большинстве которых р—n-переход образуется под точечным контактом. Это обеспечивает малое значение ёмкости Св (рис. 3), а специфическое, как и у всех СВЧ диодов, конструктивное оформление обеспечивает малые значения паразитных индуктивности Lk и ёмкости Ск и возможность монтажа диода в волноводных системах.

При подаче на р—n-переход обратного смещения, не превышающего U*обр, он ведёт себя как высокодобротный конденсатор, у которого ёмкость Св зависит от величины приложенного напряжения. Это свойство используют в варикапах, применяемых преимущественно для электронной перестройки резонансной частоты колебательных контуров, впараметрических полупроводниковых диодах, служащих для усиления СВЧ колебаний, в варакторах и умножительных диодах, служащих для умножения частоты колебаний в диапазоне СВЧ. В этих П. д. стремятся уменьшить величину сопротивления rб (основной источник активных потерь энергии) и усилить зависимость ёмкости Св от напряжения Uo6p.

У р—n-перехода на основе очень низкоомного (вырожденного) полупроводника область, обеднённая носителями заряда, оказывается очень тонкой (~ 10-2мкм), и для неё становится существенным туннельный механизм перехода электронов и дырок через потенциальный барьер (см. Туннельный эффект). На этом свойстве основана работа туннельного диода, применяемого в сверхбыстродействующих импульсных устройствах (например, мультивибраторах, триггерах), в усилителях и генераторах колебаний СВЧ, а также обращенного диода, применяемого в качестве детектора слабых сигналов и смесителя СВЧ колебаний. Их ВАХ (рис. 4) существенно отличаются от ВАХ других П. д. как наличием участка с "отрицательной проводимостью", ярко выраженной у туннельного диода, так и высокой проводимостью при нулевом напряжении.

К П. д. относят также ПП приборы с двумя выводами, имеющие неуправляемую четырёхслойную р—n—р—n-структуру и называют динисторами (см. Тиристор), а также приборы, использующие объёмный эффект доменной неустойчивости в ПП структурах без р—n-перехода — Ганна диоды. В П. д. используют и др. разновидности ПП структур: контакт металл — полупроводник (см. Шотки эффект, Шотки диод)и р—i—n-структуру, характеристики которых во многом сходны с характеристикамир—n-перехода. Свойствор—i—n-структуры изменять свои электрические характеристики под действием излучения используют, в частности, в фотодиодах и детекторах ядерных излучений, устроенных т. о., что фотоны или ядерные частицы могут поглощаться в активной области кристалла, непосредственно примыкающей кр—n-переходу, и изменять величину обратного тока последнего. Эффект излучательной рекомбинации электронов и дырок, проявляющийся в свечении некоторыхр—n-переходов при протекании через них прямого тока, используется всветоизлучающих диодах. К П. д. могут быть отнесены также и полупроводниковые лазеры.

Большинство П. д. изготавливают, используя планарно-эпитаксиальную технологию (см. Планарная технология),которая позволяет одновременно получать до нескольких тысяч П. д. В качестве полупроводниковых материалов для П. д. применяют главным образом Si, а также Ge, GaAs, GaP и др., в качестве контактных материалов — Au, Al, Sn, Ni, Cu. Для защиты кристалла П. д. его обычно помещают в металло-стеклянный, металло-керамический, стеклянный или пластмассовый корпус (рис. 5).

В СССР для обозначения П. д. применяют шестизначный шифр, первая буква которого характеризует используемый полупроводник, вторая — класс диода, цифры определяют порядковый номер типа, а последняя буква — его группу (например, ГД402А — германиевый универсальный диод; КС196Б — кремниевый стабилитрон).

От своих электровакуумных аналогов, например кенотрона, газоразрядного стабилитрона, индикатора газоразрядного, П. д. отличаются значительно большими надёжностью и долговечностью, меньшими габаритами, лучшими техническими характеристиками, меньшей стоимостью и поэтому вытесняют их в большинстве областей применения.

С развитием ПП электроники совершился переход к производству наряду с дискретными П. д. диодных структур в ПП монолитных интегральных схемах и функциональных устройствах, где П. д. неотделим от всей конструкции устройства.

Об исторических сведениях см. в ст. Полупроводниковая электроника.

Лит.: Полупроводниковые диоды. Параметры. Методы измерений, М., 1968; Федотов Я. А., Основы физики полупроводниковых приборов, М., 1970; Пасынков В. В., Чиркин Л. К., Шинков А. Д., Полупроводниковые приборы, М., 1973; Зи С. М., Физика полупроводниковых приборов, пер. с англ., М., 1973.

Ю. Р. Носов.

 



<== предыдущая лекция | следующая лекция ==>
ПРОВОДНИКИ, ИЗОЛЯТОРЫ, ПОЛУПРОВОДНИКИ | Методика изучения тревожности в профессиональной деятельности


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.014 сек.