русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Ранг матрицы и системы векторов


Дата добавления: 2015-08-14; просмотров: 600; Нарушение авторских прав


 

1. Пусть дана матрица, содержащая m строк и п столбцов:

 

 

Выделим в ней произвольным образом k строк и k столбцов. Элементы, которые находятся на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка; определитель этой матрицы называется минором k-го поряд­ка матрицы А. Очевидно, что в общем случае таких миноров k-го порядка может быть несколько. При этом максимальный порядок миноров равен минимальному из чисел т и п, т.е.

 

 

Из всех возможных миноров матрицы А выделим те из них, которые отличны от нуля. В свою очередь среди этих мино­ров можно найти по крайней мере один минор наибольшего порядка.

Определение 1. Наибольший порядок миноров, отличных от нуля, называется рангом матрицы (14.5).

Определение 2. Отличный от нуля минор матрицы, порядок которого равен рангу матрицы, называется базисным минором этой матрицы. Столбцы и строки матрицы, участвующие в образовании базисного минора, также называются базисными.

 

Заметим, что в общем случае у матрицы может быть не­сколько базисных миноров.

В п. 13.2 было дано определение ранга матрицы как наи­большего числа линейно независимых ее векторов-строк (стол­бцов). В курсе алгебры доказывается, что эти два определения эквивалентны. Приведенное в данном разделе определение да­ет возможность вычислять ранг матрицы, а значит, и ранг системы векторов.

Пример 1. Найти ранг матрицы размером 4 х 6:

 

 

Решение. Нетрудно видеть, что максимальный порядок миноров этой матрицы, отличных от нуля, равен двум, по­скольку миноры третьего порядка должны содержать элемен­ты по крайней мере двух строк со второй по четвертую. Такие определители равны нулю либо по признаку пропорциональ­ности двух строк, либо по признаку наличия в них нулевой строки. У этой матрицы существуют три базисные строки (ли­бо 1-я и 2-я, либо 1-я и 3-я), и пять ее столбцов являются ба­зисными (либо с 1-го по 5-й, либо со 2-го по 6-й); из них и формируются все базисные миноры второго порядка.



 

2. Рассмотрим квадратную матрицу порядка п, т.е. когда в матрице (14.5) т = п. Как было отмечено в п. 13.2, мат­рица порядка n является вырожденной и не имеет обратной матрицы, если ее ранг r < п. Максимальный порядок минора квадратной матрицы равен n; в этом случае базисный минор равен определителю этой матрицы. Стало быть, квадратная матрица является вырожденной, если ее определитель равен нулю.



<== предыдущая лекция | следующая лекция ==>
Миноры и алгебраические дополнения | УПРАЖНЕНИЯ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.