русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Мішаний добуток трьох векторів. Подвійний векторний добуток


Дата добавления: 2015-08-14; просмотров: 2726; Нарушение авторских прав


 

Якщо векторний добуток двох векторів помножається скалярно на третій вектор , то такий добуток трьох векторів називається мішаним (векторно-скалярним) і позначається так:

= (46).

Мішаний добуток має просте геометричне тлумачення – це скаляр, який за абсолютною величиною дорівнює об’єму паралелепіпеда, побудованого на даних трьох векторах.

Якщо вектори , , утворюють праву трійку, то мішаний добуток є число додатне, що дорівнює зазначеному об’єму, а якщо трійка , , ‑ ліва, то мішаний добуток – число від’ємне, яке за модулем дорівнює об’єму паралелепіпеда, побудованого на даних векторах.

Мішаний добуток трьох векторів дорівнює нулеві тоді, коли ці вектори компланарні, тобто умова компланарностітрьох векторів має вигляд:

(47).

Мішаний добуток не змінюється, якщо має місце переставлення співмножників за колом і змінює знак, якщо в такому переставленні порушено послідовність співмножників:

(48).

 

Тому мішаний добуток векторів , , іноді позначають простіше, написавши їх поряд у тій послідовності, в якій проводяться дії:

(49).

Помітимо, що якщо в мішаному добутку є два колінеарні вектори, то він дорівнює нулеві.

Якщо векторний добуток двох векторів помножається векторно на третій вектор , то такий добуток називається подвійним векторним добутком і позначається так:

(50).

Для подвійного векторного добутку порушується комутативний і асоціативний закони:

(51),

(52).

Вектор компланарний векторам і ; тому має місце формула:

(53).

Приклад 1. Три вершини тетраедра знаходяться в точках А(2; 1; -1), В(3; 0; 1), С(2; -1; 3). Знайти координати четвертої вершини D, яка належить вісі Оу, якщо об’єм тетраедра дорівнює 3 куб. од.

 

Розв’язання:

Оскільки точка D належить вісі Оу, то її координати (0; у; 0). Об’єм тетраедра ABCD можна розглядати як об’єму паралелепіпеда, побудованого на векторах як на ребрах:



.

Розв’язуючи це рівняння, дістанемо, що отже .

Приклад 2. Визначити, якою є трійка векторів , , (правою або лівою), якщо:

1)

2)

3)

Розв’язання:

Знайдемо мішаний добуток трьох заданих векторів. Якщо цей добуток не буде дорівнювати нулеві, то вектори , , будуть некомпланарні. Якщо при цьому то трійка , , ‑ права, а якщо то – ліва.

1) звідси видно, що трійка векторів права;

2) тобто вектори компланарні;

3) тобто трійка векторів ліва.

Приклад 3. Довести, що чотири точки лежать в одній площині.

Розв’язання:

Для того, щоб довести, що чотири точки лежать в одній площині, достатньо довести, що три вектора, початком яких є деяка з даних чотирьох точок, а кінцями є інші три точки, лежать в одній площині, тобто, що ці три вектори компланарні. За спільний початок векторів виберемо точку А, тоді:

Вектори будуть компланарними тоді, коли їх мішаний добуток дорівнює нулеві.

= ‑2+12‑8‑2=0.

Отже, одержали, що вектори компланарні, тому точки A, B, C, D належать одній площині.

Приклад 4. Задана піраміда з вершинами в точках А(1; 2; 3), В(‑2; 4; 1), С(7; 6; 3), D(4; ‑3; ‑1). Знайти:

а) довжину ребер ;

б) площу грані АВС;

в) кут між ребрами і ;

г) об’єм піраміди;

д) довжину висоти, опущеної на грань АВС.

Розв’язання:

а) Знайдемо вектори .

Знайдемо модулі цих векторів:

б) Площа грані АВС буде дорівнювати:

в) Кут між ребрами і знайдемо за формулою:

г) Об’єм піраміди обчислимо за формулою:

д) Довжину висоти h, опущеної на грань АВС, можна знайти, користуючись формулою:

звідки

Таким чином

.

 

 



<== предыдущая лекция | следующая лекция ==>
Векторний добуток двох | КОНТРОЛЬНЫЙ ТЕСТ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.049 сек.