русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Равномерная сходимость. Признак Вейерштрасса.


Дата добавления: 2015-08-14; просмотров: 1078; Нарушение авторских прав


Бесконечный ряд, построенный из функциональной последовательности

fn (x) = f1 (x) + f2 (x) + … + fn (x) + …

называется функциональным рядом.

Значение х = х0, прикоторомчисловойряд сходится, называетсяточкойсходимостирядаСовокупностьвсех точек сходимостиряда называется областьюсходимости ряда. Sn (x) = fs (x).

Областью сходимости функционального ряда обычно бывает какой-нибудь промежуток оси Ох.

Сумму n первых членов ряда (n-ю частичную сумму) обозначают через Sn(x) , а остаток ряда обозначают через Rn(x). Функциональный ряд сходится при некотором значении х, если существует конечный предел

и .

S(x) – сумма функционального ряда. Ее можно представить в виде S(x) = Sn(x) + Rn(x). Каждому значению х из области сходимости соответствует определенное значение S(x).

Разность между суммой S (x) сходящегося функционального ряда и одной из его частичных сумм Sn (x) называют остатком и обозначают

Rn (x) = S (x) – Sn (x) = fs (x).

Признак Вейерштрасса

Существует простой признак для проверки равномерной сходимости (признак Вейерштрасса)

Можно рассматривать и при этом сохраняется терминология числовых рядов, связанная с абсолютной и условной сходимостью.

Как и в рядах, абсолютная сходимость сильнее сходимости: из абсолютной сходимости вытекает сходимость.

Теорема (Вейерштрасс):
, , , — сходится. Тогда равномерно сходится на .
Доказательство:
Применим критерий Коши: Сопоставляя с предыдущим неравенством, которое верно , . Тогда, по критерию Коши, ряд равномерно сходится.

 

 



<== предыдущая лекция | следующая лекция ==>
Абсолютная и условная сходимость | Основная часть.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.007 сек.