Импульсные диоды имеют малую длительность переходных процессов и предназначены для работы в импульсных цепях. От выпрямительных диодов они отличаются малыми емкостями р-n-перехода и рядом параметров, определяющих переходные характеристики диода. Уменьшение емкостей достигается за счет уменьшения площади р-n-перехода, поэтому допустимые мощности рассеяния у них невелики (30–40 мВт).
Основные параметры импульсных диодов:
● общая емкость диода Сд, (доли пФ – несколько пФ);
● время восстановления обратного сопротивления диода tвос
Наличие времени восстановления обусловлено зарядом, накопленным в базе диода при инжекции. Для запирания диода этот заряд должен быть «ликвидирован». Это происходит за счет рекомбинаций и обратного перехода не основных носителей заряда в эмиттер.
В быстродействующих импульсных цепях широко используют диоды Шоттки (ДШ), в которых переход выполнен на основе контакта металл – полупроводник. Структура ДШ показана на рис. 3.2 е. У этих диодов не затрачивается время на накопление и рассасывание зарядов в базе. В ДШ токопрохождение осуществляется основными носителями заряда и не приводит к появлению процессов инжекции не основных носителей с последующим рассасыванием их при переключении напряжения с прямого на обратное.
Кроме того, их быстродействие зависит только от скорости процесса перезарядки барьерной емкости. Вольтамперная характеристика ДШ напоминает характеристику диодов на основе р-n-переходов. Отличие состоит в том, что прямая ветвь в пределах 8–10 декад (декада – изменение значения в 10 раз) приложенного напряжения представляет почти идеальную экспоненциальную кривую, а обратные токи малы (доли – десятки нА).
отличительными особенностями ДШ являются: высокое быстродействие, малое падение напряжения при прямом смещении (0,3–0,4 В), высокий КПД выпрямления и широкие возможности использования в качестве дополнительных элементов в конструкциях различных транзисторов и других полупроводниковых приборов с целью расширения функциональных возможностей. Диоды Шоттки применяют также в выпрямителях больших токов и в логарифмирующих устройствах.
10.Биполярные транзисторы. Структура, принцип действия, режимы работы транзистора, схемы включения транзистора. Интегральный многоэмиттерный биполярный транзистор. Структура, принцип действия, применение. Биполярные транзисторы в ключевых и аналоговых схемах.
БТ называют полупроводниковые приборы с двумя или несколькими взаимодействующими электрическими p-n переходами и тремя или более выводами. Их усилительные свойства обусловлены явлениями инжекции и экстракции не основных носителей заряда: инжекция из Э в Б, экстракция из Б в К.
Принцип работы биполярного транзистора основан на изменении сопротивления обратно смещенного p-n перехода за счет инжекции носителей заряда.
Режимы работы
Независимо от схемы включения транзисторы могут работать в одном из четырёх, отличающихся полярностью напряжения на ЭБ и БК переходе:
1)Нормальный активный режим - Э-переход включен в прямом направлении, К-переход в обратном направлении
2)Режим насыщения – Э- и К-переходы включены в прямом направлении
3)Режим отсечки - Э- и К-переходы включены в обратном направлении
4)Инверсный активный режим - Э-переход включен в обратном направлении, К-переход включен в прямом направлении.