В идеальном кристалле ток создается равным количеством электронов и «дырок». Такой тип проводимости называют собственной проводимостью полупроводников. При повышении температуры (или освещенности) собственная проводимость проводников увеличивается.
На проводимость полупроводников большое влияние оказывают примеси. Примеси бывают донорные и акцепторные. Допорная примесь — это примесь с большей валентностью. При добавлении донорной примеси в полупроводнике образуются липшие электроны. Проводимость станет электронной, а полупроводник называют полупроводником n-типа. Например, для кремния с валентностью n — 4 донорной примесью является мышьяк с валентностью n = 5. Каждый атом примеси мышьяка приведет к образованию одного электрона проводимости.
Акцепторная примесь — это примесь с меньшей валентностью. При добавлении такой примеси в полупроводнике образуется лишнее количество «дырок». Проводимость будет «дырочной», а полупроводник называют полупроводником р-типа. Например, для кремния акцепторной примесью является индий с валентностью п = 3. Каждый атом индия приведет к образованию лишней «дырки».
Контактные явления. Классификация. Электронно-дырочный переход. Образование, принцип работы р-п перехода в равновесном и неравновесном состояниях. Вольт-амперные характеристики. Эффект электрического поля.
Переходы между двумя областями полупроводника с различным типом электропроводности называют электронно-дырочными или р-n-переходами..
Анализ равновесного р-n-перехода
Высота равновесного потенциального барьера определяется разностью электростатических потенциалов в р- и n- Djo = j Ep – j En .
Djo = jТ ln (nnо ррo / ni2)
равновесная высота потенциального барьера определяется отношением концентраций однотипных носителей (электронов или дырок) по обе стороны перехода, на его границах:
ширина равновесного плавного перехода в следующем виде:lo = 3Ö(9eoeDjo) / (qN'), где N' — градиент эффективной концентрации. Поскольку градиент одинаков в обеих частях перехода, то и ширина lo делится поровну между n- и р-слоями, т. е. плавный переход симметричен.
Анализ неравновесного р-n-перехода
Если подключить источник ЭДС U между р- и n-слоями, то равновесие перехода нарушится и в цепи потечет ток. Удельное сопротивление обедненного слоя намного выше, чем удельные сопротивления нейтральных слоев, поэтому внешнее напряжение практически полностью падает на переходе, а значит, изменение высоты потенциального барьера равно значению приложенной ЭДС.
Когда ЭДС U приложена плюсом к р-слою, высота барьера уменьшается
Dj = Djо – U.
Напряжение такой полярности является прямым. При отрицательном потенциале на p-слое высота барьера увеличивается и знак минус следует изменить на плюс.
ширину неравновесного барьера в виде
l = Ö(2eoe(Djo – U)) / (qN).
Эффектом электрического поля называют изменение концентрации носителей (а значит, и проводимости) в приповерхностном слое полупроводника под действием электрического поля. Слой с повышенной (по сравнению с объемом) концентрацией основных носителей называют обогащенным, а слой с пониженной их концентрацией — обедненным.
Вольт-амперная характеристика (ВАХ) p-n-перехода представляет собой зависимость тока от величины и полярности приложенного напряжения и описывается выражением:
где I0 – тепловой обратный ток p-n-перехода; Uд – напряжение на p-n-переходе; jт = k T/ q – тепловой потенциал, равный контактной разности потенциалов (jк) на границе p-n-перехода при отсутствии внешнего напряжения (при T = 300 К, jт = 0,025 В); k – постоянная Больцмана; T – абсолютная температура; q –заряд электрона.
Рис. 2.4. Вольт-амперная характе-ристика p-n-перехода и влияние температуры на прямой и обратный токи
При отрицательных напряжениях порядка 0,1…0,2 В экспоненциальной составляющей, по сравнению с единицей, можно пренебречь (е4 » 0,02), при положительных напряжениях, превышающих 0,1 В, можно пренебречь единицей (е4 » 54,6). Тогда вольт-амперная характеристика p-n-перехода, будет иметь вид, приведенный на рис 2.4.
По мере возрастания положительного напряжения на p-n-переходе прямой ток диода резко возрастает. Поэтому незначительное изменение прямого напряжения приводит к значительному изменению тока, что затрудняет задание требуемого значения прямого тока с помощью напряжения. Вот почему для p-n-перехода характерен режим заданного прямого тока.
Вольт-амперная характеристика (см. рис. 2.4) имеет две ветви: прямую, расположенную в первом квадранте графика, и обратную, расположенную в третьем квадранте. Обратный ток создается дрейфом через p-n-переход неосновных носителей заряда. Поскольку концентрация неосновных носителей заряда на несколько порядков ниже, чем основных, обратный ток несоизмеримо меньше прямого.
При небольшом увеличении обратного напряжения от нуля обратный ток сначала возрастает до значения, равного значению теплового тока (I0), а с дальнейшим увеличением Uобр ток остается постоянным. Это объясняется тем, что при очень малых значениях обратного напряжения еще есть незначительная диффузия основных носителей заряда, встречное движение которых уменьшает результирующий ток в обратном направлении. Когда эта диффузия прекращается, значение обратного тока определяется только движением через переход неосновных носителей, количество которых в полупроводнике не зависит от напряжения. Повышение обратного напряжения до определенного значения, называемого напряжением пробоя (Uобр.проб) приводит к пробою электронно-дырочного перехода, т.е. к резкому уменьшению обратного сопротивления и, соответственно, росту обратного тока.
Свойство p-n-перехода проводить электрический ток в одном направлении значительно больший, чем в другом, называют односторонней проводимостью. Электронно-дырочный переход, электрическое сопротивление которого при одном направлении тока на несколько порядков больше, чем при другом, называют выпрямляющим переходом.
Влияние температуры на прямую и обратную ветви вольт-амперной характеристики p-n-перехода показано штриховой линией (см. рис. 2.4). Прямая ветвь при более высокой температуре располагается левее, а обратная – ниже. Таким образом, повышение, температуры при неизменном внешнем напряжении приводит к росту как прямого, так и обратного токов, а напряжение пробоя, как правило, снижается. Причиной такого влияния повышения температуры является уменьшение прямого и обратного сопротивлений из-за термогенерации пар носителей заряда, а также из-за снижения потенциального барьера (j0) и увеличение энергии подвижных носителей зарядов.
Рассмотрим причины, вызывающие пробой p-n-перехода и процессы, которые при этом происходят.
Пробоем p-n-перехода (рис. 2.5) называют, как было сказано, резкое уменьшение обратного сопротивления, вызывающее значительное увеличение тока при достижении обратным напряжением критического для данного прибора значения (Uобр.проб). Пробой p-n-перехода происходит при повышении обратного напряжения вследствие резкого возрастания процессов генерации пар «свободный электрон – дырка». В зависимости от причин, вызывающих дополнительную интенсивную генерацию пар носителей заряда, пробой может быть электрическим и тепловым. Электрический пробой, в свою очередь, делится на лавинный и туннельный.