русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Обернена матриця.


Дата добавления: 2015-08-14; просмотров: 1044; Нарушение авторских прав


 

Визначимо операцію ділення матриць як операцію, обернену множенню.

 

Визначення.Якщо існують квадратні матриці Х и А одного порядку, що задовольняють умові:

XA = AX = E,

де Е - одинична матриця того ж самого порядку, що й матриця А, те матриця Х називається оберненоюдо матриці А и позначається А–1.

 

Кожна квадратна матриця з визначником, не рівним нулю має обернену матрицю й притім тільки одну.

Розглянемо загальний підхід до знаходження оберненої матриці. Виходячи з визначення добутку матриць, можна записати:

AX = E Þ , i=( 1, n ), j=( 1, n ),

eij = 0, i ¹ j,

eij = 1, i = j .

Таким чином, одержуємо систему рівнянь:

,

Вирішивши цю систему, знаходимо елементи матриці Х.

 

Приклад. Дано матрицю А = , знайти А–1.

 

 

Таким чином, А–1= .

 

Однак, такий спосіб незручний при знаходженні обернених матриць більших порядків, тому звичайно застосовують наступну формулу:

 

,

 

де Aji – алгебраїчне доповнення елемента аji матриці А.

 

Приклад. Дано матрицю А = , знайти А–1.

det A = 4 – 6 = – 2.

 

M11=4; M12= 3; M21= 2; M22=1

x11= – 2; x12= 1; x21= 3/2; x22= – 1/2

Таким чином, А–1= .

 



<== предыдущая лекция | следующая лекция ==>
 | Властивості обернених матриць.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.226 сек.