русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Однородные дифференциальные уравнения первого порядка.


Дата добавления: 2015-01-16; просмотров: 787; Нарушение авторских прав


Определение 1. Функция называется однородной функцией нулевого измерения, если

Полагая , получаем .

Определение 2. Дифференциальное уравнение вида называется однородным, если есть однородная функция нулевого измерения.

Из сказанного выше следует, что однородное уравнение можно записать в виде .

Всякое однородное уравнение подстановкой приводится к уравнению с разделяющимися переменными:

Если есть корень уравнения то решением уравнения будет , а исходного - . Решения, отличные от , где есть корень уравнения получаются разделением переменных в уравнении .

Определение 3. Мы будем говорить, что есть однородная функция измерения , если .

Если дифференциальное уравнение записать в виде где и - однородные функции одного измерения, то оно приводится к однородному дифференциальному уравнению

.

Дифференциальное уравнение

приводится к однородному в том случае, когда . Действительно, пусть и удовлетворяют системе уравнений

.

Положим . Тогда

, а уравнение однородное.

Пример 1. Проинтегрировать уравнение

Решение. Положим Тогда , и тем самым

или

(1)

Для данного уравнения поэтому разделив правую и левую части уравнения (1) на , мы получим уравнение или

. (2)

Интегрируя (2), получаем , откуда

Пример 6. Найти частное решение дифференциального уравнения

(3)

удовлетворяющее начальному условию

Решение. Мы ищем решение в окрестности точки поэтому можем считать

Запишем уравнение (3) в виде

 

. ( )

Применим подстановку . Получаем или . Следовательно,

Подставляя в последнее равенство , получаем , откуда . Таким образом, .



<== предыдущая лекция | следующая лекция ==>
Уравнения с раздельными и разделяющимися переменными . | Линейное дифференциальное уравнение первого порядка.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.7 сек.