русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Ранг матрицы


Дата добавления: 2015-08-14; просмотров: 623; Нарушение авторских прав


Рассмотрим прямоугольную матрицу .

Если в этой матрице выделить произвольно строк и столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу порядка. Определитель этой матрицы называется минором k-го порядкаматрицы .

Очевидно, что матрица обладает минорами любого порядка от до наименьшего из чисел и . Некоторые среди них будут равны нулю. Среди всех отличных от нуля миноров матрицы найдется, по крайней мере, один минор, порядок которого будет наибольшим.

Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы.

Если ранг матрицы равен , то это означает, что в матрице имеется отличный от нуля минор порядка , но всякий минор порядка, большего чем , равен нулю. Ранг матрицы обозначается через . Очевидно, что выполняется соотношение

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований.

При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор порядка матрицы , отличный от нуля, то требуют вычисления лишь миноры порядка, окаймляющие минор , т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен .

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы и эквивалентны, то это записывается так: .



Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

.

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 11. Найти методом окаймления миноров ранг матрицы

Решение. Начинаем с миноров порядка, (т.е. с элементов матрицы ). Выберем, например, минор (элемент) , расположенный в первой строке и первом столбце. Окаймляя при помощи второй строки и третьего столбца, получаем минор , отличный от нуля. Переходим теперь к минорам порядка, окаймляющим . Их всего два (можно добавить второй столбец или четвертый). Вычисляем их:

, .

Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы равен двум.

Пример 12. Найти ранг матрицы

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на и :

;

из третьей строки вычтем вторую, при этом получим матрицу

,

которая эквивалентна матрице , так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы равен , а следовательно, и .

Матрицу легко привести к канонической.

Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются.

Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.



<== предыдущая лекция | следующая лекция ==>
Разложение определителя матрицы по элементам строки или столбца. | Обратная матрица


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.