русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Признак Лейбница. Абсолютная и условная сходимость ряда


Дата добавления: 2015-08-14; просмотров: 1085; Нарушение авторских прав


Теорема (признак Лейбница). Знакочередующийся ряд сходится, если:

1) последовательность абсолютных величин членов ряда монотонно убывает, т.е. .

2) общий член ряда стремится к нулю: . При этом сумма S ряда удовлетворяет неравенствам

Пусть дан знакопеременный ряд , где – произвольные числа (действительные или комплексные). Если ряд , составленный из абсолютных величин его членов, сходится, то данный ряд также сходится. В этом случае знакопеременный ряд называется абсолютно сходящимся. Следовательно, если же знакопеременный ряд сходится, а ряд расходится, то данный ряд называется условно сходящимся.

Пример 1.Исследовать на сходимость ряд Решение. 1. Исследуем на сходимость ряд из абсолютных величин членов данного ряда: = .Сравним этот ряд с рядом . Так как < , то > для всех n.Ряд расходится, так как расходится ряд (как ряд Дирихле при p= <1). Значит, по 1-му признаку сравнения расходится и ряд .

Итак, исходный ряд не является абсолютно сходящимся.

2. Выясним, сходится ли данный знакочередующийся ряд, применяя признак Лейбница.

· Проверим, выполняется ли неравенство > для абсолютных

величин членов данного ряда:

= > .

Данное неравенство эквивалентно неравенству < , которое верно для любого n=1,2….Значит для все номеров n = 1,2…

· Найдём предел общего члена ряда: = = 0.

Таким образом, для данного знакочередующегося ряда выполнены оба условия, содержащиеся в признаке Лейбница, откуда следует, что исходный ряд сходится, однако он не является абсолютно сходящимся, поэтому данный ряд сходится условно. Ответ: ряд сходится условно.

Задание 6. Исследовать на абсолютную и условную сходимость ряды:

1) 6)
2) 7)
3) 8)
4) 9)
5) 10)


<== предыдущая лекция | следующая лекция ==>
Понятие знакопеременного ряда | Понятие функционального ряда


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.