русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Отношения между множествами


Дата добавления: 2015-08-14; просмотров: 914; Нарушение авторских прав


Чтобы наглядно изображать множества и отношения между ними, английский математик Джон Венн (1834 - 1923) предложил использовать замкнутые фигуры на плоскости. Намного раньше Леонард Эйлер (1707 - 1783) для этих целей использовал круги, при этом точки внутри круга считались элементами множества. Такие изображения сейчас называют диаграммами Эйлера - Венна.

Пусть даны два произвольных множества A и B, тогда возможны пять случаев отношений между ними:

1. Множества A и B не имеют общих элементов (см. рис. 1а).

2. Множества A и B имеют общие элементы, но не все элементы множества A принадлежат множеству B , и не все элементы множества B принадлежат множеству A. В этом случае говорят о пересечении множеств A и B (см. рис. 1б).

3. Все элементы множества B принадлежат множеству A, но не все элементы множества А принадлежат множеству В. В этом случае говорят о включении множества В во множество А (см. рис. 1в).

Определение: Если имеются два множества A и B, причем каждый элемент множества В принадлежит множеству А, то множество В называется подмножеством множества А. Записывается это так: В Ì А.

Само множество A и пустое множество Øназывают несобственными подмножествами множества А. Все остальные подмножества называются собственными.

4. Все элементы множества A принадлежат множеству B, но не все элементы множества B принадлежат множеству A. В этом случае говорят о включении множества A во множество B (А Ì В) (см. рис. 1г).

5. Все элементы множества A принадлежат множеству B и все элементы множества B принадлежат множеству A. В этом случае говорят, что множества A и B равны (см. рис. 1д).

Определение: а) Два множества A и B называются равными (или совпадающими), если А Ì В и В Ì А.

б) Два множества A и B называются равными, если они состоят из одних и тех же элементов. Записывается это так: А = В.



                       
     
         
   
 

 


а) б) в) г) д)

Рис. 1

Определение: Множество, относительно которого все множества, рассматриваемые в данной задаче, являются подмножествами, называется универсальным. Универсальное множество будем обозначать буквой U.



<== предыдущая лекция | следующая лекция ==>
Способы задания множества | Основные операции над множествами


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.008 сек.