русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Функция


Дата добавления: 2015-08-14; просмотров: 711; Нарушение авторских прав


 

Пусть Х и У два множества и F отношение в Х´У.

Определение. Отношение F называется функциейиз Х в У, если оно удовлетворяет свойству:

из xFy и xFz следует, что y = z.

В дальнейшем мы будем применять также обозначение y = F(x) вместо xFy, если F является функцией. Множества DF и RF , введенные в предыдущем пункте для функции F носят соответственно названия: DF - область определенияи RF - область значенийфункции F. Очень часто область определения и область значений заранее не задаются, а возникают, исходя из задания функции.

Примеры.

1) {(1,2), (2,2), (Рузвельт, Черчилль)};

2) {(1,2), (1,3), (2,2)};

3) {(x, x2 +x+1)|xÎR};

4) {(x2 ,x)|xÎR}.

Из приведенных примеров 1 и 3 определяют функцию, а 2 и 4 не являются функцией, т.к. не выполнено определение функции.

Для функции применяются также другие названия: преобразование, отображение, соответствие. Если y = F(x), то x называют аргументомфункции, а y образом.

Две функции F и G считаются равными, если выполнены равенства соответствующих множеств. Последнее эквивалентно следующим двум равенствам:

DF =DG и F(x)=G(x) для "xÎDF.

Следующие определения переносятся с отношений:

1) В случае, когда DF = Х функцию называют всюду определенной.

2) Функция F из Х в У называется сюръекцией(или отображением на), если RF =У.

3) Функция F из Х в У называется инъекцией(или однозначным отображением), если из х1 ¹ х2 следует, что F(х1) ¹ F(х2).

Всюду определенная функция F из Х в У называется биекцией, если она одновременно является сюръекцией и инъекцией.

Примеры: 1) функция у=еx - биекция из R в R+ ;

2) у=х2 - сюръекция из [-1, 1] на [0, 1], не являющаяся инъекцией.

Определение. Пусть F - функция из X в Y, а G - из Y в Z. Суперпозицией функцийF и G называется такая функция H из X в Z, что z = H(x) (т.е. (x, z)Î H Í X´Z) тогда и только тогда, когда y=F(x) и z=G(y). Суперпозиция обозначается GoF. В определении Н – функция, почему?



Определение. Для функции F из Х в У функция G из У в Х называется правой обратной(соответственно, левой обратной), если справедливо равенство FoG=IУ (соответственно, GoF=IХ), где через IХ (IУ) обозначено тождественное отображение на Х (соответственно на У), т.е. IХ(x) = x (IУ(y) = y).

Функция у=х2, из рассмотренного выше примера не имеет левой обратной, но имеет правую обратную (ею является функция х= ). Однако если сузить область определения функции у=х2 до отрезка [0,1] (или [-1,0]), оставив туже самую область значений, то эта функция будет иметь уже и левую обратную: х= (соответственно, х= - ).

Лемма 1. Если функция F имеет левую обратную, то F является инъекцией.

Доказательство. Действительно, если бы F не являлась инъекцией, то существовали бы х1 ¹ х2 такие, что y=F(x1)=F(x2). Пусть G - левая обратная к F, то x1 = GoF(x1 ) = G(y) = GoF(x2 ) = x2, что противоречит предположению.

Лемма 2. Если функция F имеет правую обратную, то F является сюръекцией.

Доказательство. Утверждение легко вытекает из определения правой обратной функции G: для любого уÎУ Þ FoG(у)=у.

Лемма 3. Если у функции F из Х в У существуют левая и правая обратная функции, то они совпадают.

Доказательство. Пусть G и H - обозначают соответственно левую и правую обратную функции к F. Тогда DG = RF = DH = У. Остается проверить равенство G(y) = H(y) для любого yÎУ. Но G(y) = G(IУ(y)) = G(F(H(y))) = IХ(H(y)) = H(y).

Определение. Функция из У в Х, которая является правой и левой обратной к функции F, называется обратной функциейк F и обозначается через F -1.

Теорема. Пусть F является функцией из Х в У. Для существования обратной функции F-1 из У в Х необходимо и достаточно, чтобы F была биекцией.

Необходимость легко вытекает из лемм 1 и 2.

Достаточность. Пусть yÎУ. Так как F является сюръекцией, то существует хÎХ такое, что F(x)=y. При этом такое х одно, так как F также и инъекция. Определим функцию G(x)=y. Легко проверить, что таким образом определенная функция является обратной к F.

Следствие. Если F является биекцией, то и F-1 также является биекцией.

 



<== предыдущая лекция | следующая лекция ==>
Произведение множеств. Бинарные отношения. Отношение эквивалентности. | Мощность множеств. Конечные множества


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.009 сек.