русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Задача 4.


Дата добавления: 2015-08-14; просмотров: 663; Нарушение авторских прав


 

4.1-4.20. Найти собственные числа и собственные векторы матрицы А.

4.1. А = ; 4.2. А = ;

4. 3. А = ; 4.4. А = ;

4. 5. А = ; 4.6. А = ;

4.7. А = ; 4.8. А = ;

4.9. А = ; 4.10. А = ;

4. 11. А = ; 4.12. А = ;

4.13. А = ; 4.14. А = ;

4.15. А = ; 4.16. А = ;

4.17. А = ; 4.18. А = ;

4.19. А = ; 4.20. А = .

Указания к задаче 4: собственные числа и собственные векторы

Число называется собственным числом квадратной матрицы А n-ого порядка, если существует такой ненулевой n-мерный вектор Х, что АХ= Х.

Этот ненулевой вектор Х называется собственным вектором матрицы А, соответствующим ее собственному числу .

Множество всех собственных чисел матрицы А совпадает с множеством всех решений уравнения , которое называется характеристическим уравнением матрицы А.

Множество всех собственных векторов матрицы А, соответствующих ее собственному числу , совпадает с множеством всех ненулевых решений системы однородных уравнений

(А - Е) = 0.

Задача 4.

Найти собственные числа и собственные векторы матрицы А.

А = .

Решение: Найдем характеристическое уравнение матрицы А – определитель матрицы А - Е, где Е – единичная матрица, –независимая переменная.

 

А Е = = .

 

 

При вычислении данного определителя использовалось его разложение по элементам третьего столбца.

Найдем теперь собственные числа матрицы А – корни характеристического уравнения . Получаем:

, , .

Далее найдем собственные векторы матрицы А, соответствующие каждому из собственных чисел.

Пусть

Х= – искомый собственный вектор.

Тогда система однородных уравнений (А - Е) = 0 выглядит так:

или

(1)

 

Эта однородная система линейных уравнений имеет множество решений, так как ее определитель равен нулю.



При система (1) принимает вид:

Общее решение этой системы , где любое число.

В качестве собственного вектора достаточно взять любое частное решение. Пусть, например, , тогда собственный вектор, соответствующий собственному числу , имеет вид

.

При система (1) принимает вид:

Общее решение этой системы , где любое число.

 

Пусть, например, , тогда собственный вектор, соответствующий собственному числу , имеет вид

.

Аналогично при получаем систему

,

 

общее решение которой , где любое число.

Пусть , тогда собственный вектор, соответствующий собственному числу , имеет вид

.

 

Ответ: , , ,

 

, , .

 

 



<== предыдущая лекция | следующая лекция ==>
Задача 3. | Матрица GE/McKinsey


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.008 сек.