0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А (10), В (11), С(12), C(12), D(13), Е(14), F(15)
Десятичная система счисления. Рассмотрим в качестве примера десятичное число 555. Цифра 5 встречается трижды, причем самая правая цифра 5 обозначает пять единиц, вторая справа — пять десятков и, наконец, третья справа — пять сотен.
Позиция цифры в числе называется разрядом. Разряд числа возрастает справа налево, от младших разрядов к старшим. В десятичной системе цифра, находящаяся в крайней справа позиции (разряде), обозначает количество единиц, цифра, смещенная на одну позицию влево, — количество десятков, еще левее — сотен, затем тысяч и так далее. Соответственно имеем разряд единиц, разряд десятков и так далее.
Число 555 записано в привычной для нас свернутой форме. Мы настолько привыкли к такой форме записи, что уже не замечаем, как в уме умножаем цифры числа на различные степени числа 10.
В развернутой форме записи числа такое умножение записывается в явной форме. Так, в развернутой форме запись числа 555 в десятичной системе будет выглядеть следующим образом:
55510 = 5*102 + 5*101 + 5*10°.
Как видно из примера, число в позиционной системе счисления записывается в виде суммы числового ряда степеней основания (в данном случае 10), в качестве коэффициентов которых выступают цифры данного числа.
Для записи десятичных дробей используются отрицательные значения степеней основания. Например, число 555,55 в развернутой форме записывается следующим образом:
555,5510 = 5*102 + 5*101 + 5-10°+ 5* + 5*10 . В общем случае в десятичной системе счисления запись числа А10, которое содержит п целых разрядов числа и т дробных разрядов числа, выглядит так:
Из вышеприведенных формул видно, что умножение или деление десятичного числа на 10 (величину основания) приводит к перемещению запятой, отделяющей целую часть от дробной, на один разряд соответственно вправо или влево. Например:
Двоичная система счисления. В двоичной системе счисления основание равно 2, а алфавит состоит из двух цифр (0 и 1). Следовательно, числа в двоичной системе в развернутой форме записываются в виде суммы степеней основания 2 с коэффициентами, в качестве которых выступают цифры О или 1.
Например, развернутая запись двоичного числа может выглядеть так:
А2 = 1*22 + 0*21 + 1*2° + 0* + 1* .
Свернутая форма этого же числа:
А2 = 101,012.
Из вышеприведенных формул видно, что умножение или деление двоичного числа на 2 (величину основания) приводит к перемещению запятой, отделяющей целую часть от дробной на один разряд соответственно вправо или влево. Например:
101,012.* 2 = 1010,12;
101,012 : 2 = 10,1012.
1. Записать числа 19,9910,10,102 в развернутой форме.
2. Во сколько раз увеличатся числа 10,110,10,12 при переносе запятой на один знак вправо?