русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Цилиндрические поверхности с образующими, параллельными координатной оси


Дата добавления: 2015-08-14; просмотров: 2475; Нарушение авторских прав


Определение 8.1.1. Цилиндрической поверхностью называется множество параллельных прямых, пересекающих данную линию.

Эта линия называется направляющей, а параллельные прямые - образующими цилиндрической поверхности.

Будем рассматривать в дальнейшем только такие цилиндрические поверхности, направляющие которых лежат в одной из координатных плоскостей, а образующие параллельны координатной оси, перпендикулярной этой области.

Рассмотрим цилиндрическую поверхность с образующими, параллельными оси Oz, и направляющей l, лежащей в плоскости Oxy.

Направляющая l задается, очевидно, на плоскости уравнением: F(x,y) = 0, в пространстве системой уравнений:

(8.1.)

(Уравнение (8.1.) задают эту линию как пересечение цилиндрической поверхности и координатной плоскости XOY).

Докажем теперь, что цилиндрическая поверхность имеет уравнение F(x,y) = 0 (8.2.)

Д-но, пусть M(x,y,z) - произвольная точка поверхности, тогда проекция точки М на плоскость XOY - точка М` - имеет координаты (x,y,0) и лежит на направляющей l. Поэтому координаты т. М удовлетворяют уравнению (2) (т.к. оно не содержит z).

Далее, если N(x`,y`,0) S (поверхности), то её проекция на плоскость - точка N`(x`,y`,0) - не принадлежит l и, следовательно F(x,y) 0.

Следовательно, уравнение F(x,y) = 0, не содержащее z, определяет в пространстве цилиндрическую поверхность с образующими, параллельными оси Oz и направляющей, которая в плоскости Oxy имеет то же самое уравнение F(x,y) = 0.

 

Рис.8.1.

Аналогично устанавливается, что цилиндрические поверхности с образующими, параллельными оси Ox или Oy, задаются соответственно уравнениями F(y,z) = 0 или F(x,z) = 0.




<== предыдущая лекция | следующая лекция ==>
Задачи для самостоятельной работы. | Цилиндры второго порядка


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.