русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Множество целых чисел


Дата добавления: 2015-08-14; просмотров: 753; Нарушение авторских прав


Множество, состоящее из всех натуральных чисел, нуля и всех отрицательных чисел, называется множеством целых чисел и обозначается буквой Z (от немецкого слова "die Zahl" - число). Имеем: NÌN0Ì Z.

Так как на числовой оси меньшее число располагается левее большего, то всякое отрицательное число меньше любого положительного числа и нуля. Запись m<0 означает, что m - отрицательное число.

Во множестве Z уравнение x+a=b всегда имеет единственное решение: х=b- а.

Так как знак минус означает симметрию относительно начала, то

- (- а)=а, а- b=а+(- b), а- (b- с)=а- b+с.

При умножении справедливы следующие правила знаков:

(- а) b=а (- b)=( - а )b, (- а) (- b)=а b.

Правила арифметических действий над отрицательными числами легко выводятся из общих законов арифметических операций: переместительности (коммутативности) и сочетательности (ассоциативности) сложения и умножения, а также распределительности (дистрибутивности) умножения относительно сложения:

а+b=b+а, аb=bа, а+(b+с)=(а+b)+с, а(bс)=(аb)с, а(b+с)=аb+ас.

Отрицательные числа впервые появились в Древнем Китае. Уже в VI-XI веках они систематически употреблялись в Индии при решении задач. Однако, в европейской науке отрицательные числа получили окончательное признание лишь в XVII веке во времена Рене Декарта (1596-1650), давшего геометрическое истолкование чисел как направленных отрезков.



<== предыдущая лекция | следующая лекция ==>
Множество натуральных чисел | Рациональные числа


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.084 сек.