русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Преобразования симметрии относительно заданной плоскости.


Дата добавления: 2015-08-06; просмотров: 3771; Нарушение авторских прав


Некоторые ориентации трехмерного объекта нельзя получить одними вращениями, требуются преобразования отражения. В трехмерном пространстве отражение происходит относительно плоскости. По аналогии с двумерным отражением, трехмерное отражение относительно плоскости эквивалентно вращению вокруг оси в трехмерном пространстве в четырехмерное и обратно в исходное трехмерное пространство. Для чистого отражения детерминант матрицы равен -1.

В общем случае матрица отражения имеет следующий вид:

- отражение относительно плоскости xy.

- отражение относительно плоскости yz.

- отражение относительно плоскости xz.

Симметрии относительно плоскостей , осей и точки (начала координат) задаются матрицами

Симметрии относительно произвольных плоскостей и прямых можно получить по той же формуле, что и растяжения, взяв в качестве нужную комбинацию чисел и . Однако если мы хотим, чтобы полученное преобразование было действительно симметрией нужного вида, векторы , для которых , должны быть перпендикулярны, то есть, их скалярное произведение должно быть равно : .
При отыскании нужных векторов полезно иметь в виду, что вектор с координатами перпендикулярен плоскости .
В частности, матрица симметрии относительно плоскости имеет вид

 



<== предыдущая лекция | следующая лекция ==>
Отражение в двумерном пространстве | Симметрия относительно плоскости


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.103 сек.