русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

ТЕОРЕТИЧЕСКИЕ УПРАЖНЕНИЯ


Дата добавления: 2015-08-06; просмотров: 655; Нарушение авторских прав


ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

1) Скалярное поле. Производная по направлению.

2) Градиент, его свойства. Инвариантное определение градиента.

3) Векторное поле. Поток векторного поля через поверх­ность, его физический смысл.

4) Формула Остроградского.

5) Дивергенция векторного поля, ее физический смысл. Инвариантное определение дивергенции. Свойства дивергенции.

6) Соленоидальное поле, его основные свойства.

7) Линейный интеграл в векторном поле, его свойства и фи­зический смысл.

8) Циркуляция векторного поля, ее гидродинамический смысл.

9) Формула Стокса.

10) Ротор векторного поля, его свойства. Инвариантное опре­деление ротора.

11) Условия независимости линейного интеграла от формы пути интегрирования.

12) Потенциальное поле. Условия потенциальности.

ТЕОРЕТИЧЕСКИЕ УПРАЖНЕНИЯ

1) Найти производную скалярного поля по направлению градиента скалярного поля

2) Найти градиент скалярного поля , где — по­стоянный вектор, а — радиус-вектор. Каковы поверхности уровня этого поля и как они расположены по отношению к век­тору ?

3) Доказать, что если 5 — замкнутая кусочно-гладкая по­верхность и — ненулевой постоянный вектор, то

где —вектор, нормальный к поверхности .

4) Доказать формулу

где ; — поверхность, ограничивающая объем ; — орт внешней нормали к поверхности . Установить условия применимости формулы.

5) Доказать, что если функция удовлетворяет уравнению Лапласа

то

где — производная по направлению нормали к кусочно-гладкой замкнутой поверхности .

6) Доказать, что если функция является многочле­ном второй степени и — кусочно-гладкая замкнутая поверх­ность, то интеграл пропорционален объему, ограни­ченному поверхностью .

7) Пусть , где линей­ные функции от , и пусть — замкнутая кусоч­но-гладкая кривая, расположенная в некоторой плоскости. Доказать, что если циркуляция отлична от нуля,
то она пропорциональна площади фигуры, ограниченной контуром .



8) Твердое тело вращается с постоянной угловой скоростью вокруг неподвижной оси, проходящей через начало координат. Вектор угловой скорости . Определить ротор и дивергенцию поля линейных скоростей точек тела (здесь — радиус-вектор).

 



<== предыдущая лекция | следующая лекция ==>
Векторное и смешанное произведение векторов. | РАСЧЕТНЫЕ ЗАДАНИЯ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.187 сек.