русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Дифференциальные уравнения 2-го порядка


Дата добавления: 2015-01-16; просмотров: 1208; Нарушение авторских прав


§1. Методы понижения порядка уравнения.

Дифференциальное уравнение 2-го порядка имеет вид:

. (1.1)

Общим решением уравнения является семейство функций, зависящее от двух произвольных постоянных и : (или – общий интеграл дифференциального уравнения 2-го порядка). Задача Коши для дифференциального уравнения 2-го порядка (1.1) состоит в отыскании частного решения уравнения, удовлетворяющего начальным условиям: при : , . Необходимо заметить, что графики решений уравнения 2-го порядка могут пересекаться в отличие от графиков решений уравнения 1-го порядка. Однако решение задачи Коши для уравнений 2-го порядка (1.1) при довольно широких предположениях для функций, входящих в уравнение, единственно, т.е. всякие два решения с общим начальным условием , совпадают на пересечении интервалов определения.

Получить общее решение или решить задачу Коши для дифференциального уравнения 2-го порядка аналитически удается далеко не всегда. Однако в некоторых случаях удается понизить порядок уравнения с помощью введения различных подстановок. Разберем эти случаи.

1. Уравнения, не содержащие явно независимой переменной .

Пусть дифференциальное уравнение 2-го порядка имеет вид: , т.е. в уравнении (1.1) явно не присутствует независимая переменная . Это позволяет принять за новый аргумент, а производную 1-го порядка принять за новую функцию . Тогда .

Таким образом, уравнение 2-го порядка для функции , не содержащее явно , свелось к уравнению 1-го порядка для функции . Интегрируя это уравнение, получаем общий интеграл или , а это есть дифференциальное уравнение 1-го порядка для функции . Решая его, получаем общий интеграл исходного дифференциального уравнения, зависящий от двух произвольных постоянных: .

Пример 1. Решить дифференциальное уравнение при заданных начальных условиях: , .



Решение.

Так как в исходном уравнении в явном виде отсутствует аргумент , то примем за новую независимую переменную, а – за . Тогда и уравнение приобретает следующий вид для функции : .

Это дифференциальное уравнение с разделяющимися переменными: . Откуда следует , т.е. .

Так как при и , то подставляя начальные условия в последнее равенство, получаем, что и , что равносильно . В результате для функции имеем уравнение с разделяющимися переменными, решая которое, получаем . Используя начальные условия, получаем, что . Следовательно, частный интеграл уравнения, удовлетворяющий начальным условиям, имеет вид: .

2. Уравнения, не содержащие явно искомой функции .

Пусть дифференциальное уравнение 2-го порядка имеет вид: , т.е. в уравнение явно не входит искомая функция . В этом случае вводят постановку . Тогда и уравнение 2-го порядка для функции переходит в уравнение 1-го порядка для функции . Проинтегрировав его, получаем дифференциальное уравнение 1-го порядка для функции : . Решая последнее уравнение, получаем общий интеграл заданного дифференциального уравнения , зависящий от двух произвольных постоянных: .

Пример 2. Найти общее решение уравнения:

Решение.

В данное уравнение 2-го порядка явно не входит искомая функция , следовательно, делаем замену: и . В результате чего получаем дифференциальное уравнение 1-го порядка для функции : или , являющееся линейным уравнением. Решая его, получаем: или . Итак, для функции получили дифференциальное уравнение с разделяющимися переменными: , откуда следует общее решение исходного уравнения: .

3. Порядок степени понижается, если удается преобразовать его к такому виду, что обе части уравнения становятся полными производными по от каких-нибудь функций. Например, пусть дано уравнение . Деля обе части на , получаем ; ; ; – порядок уравнения понижен.

 

§2. Линейное дифференциальное уравнение 2-го порядка.

Линейное дифференциальное уравнение (ЛДУ) 2-го порядка имеет следующий вид:

, (2.1)

где , , и – заданные функции, непрерывные на том промежутке, на котором ищется решение. Предполагая, что a0(x) ≠ 0, поделим (2.1) на и, после введения новых обозначений для коэффициентов, запишем уравнение в виде:

(2.2)

Примем без доказательства, что (2.2) имеет на некотором промежутке единственное решение, удовлетворяющее любым начальным условиям , , если на рассматриваемом промежутке функции , и непрерывны. Если , то уравнение (2.2) называется однородным, и уравнение (2.2) называется неоднородным в противном случае.

Рассмотрим свойства решений лоду 2-го порядка.

Определение. Линейной комбинацией функций называется выражение , где – произвольные числа.

Теорема. Если и – решение лоду

, (2.3)

то их линейная комбинация также будет решением этого уравнения.



<== предыдущая лекция | следующая лекция ==>
Деление на 3 | Доказательство.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 2.438 сек.