русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Подстановки, инверсии, транспозиции


Дата добавления: 2015-07-23; просмотров: 11245; Нарушение авторских прав


 

Числа i и j образуют в перестановке инверсию, если i > j, но i расположено раньше j. Если число инверсий в перестановке четно, то перестановка называется четной, в противном случае нечетной. Например, перестановка (4 7 1 5 3 6 2) четна, так как число инверсий в ней 12 четно. Для определения числа инверсий в перестановке следует выбрать порядок их подсчета. Проще всего подсчитывать сколько инверсий образует число с последующими числами перестановки:

Inv(4 7 1 5 3 6 2) = 3 + 5 + 0 + 2 + 1+ 1+ 0 = 12.

Операция транспозиции заключается в перемене местами двух элементов перестановки.

 

Теорема. Одна транспозиция меняет четность перестановки на противоположную.

Доказательство. Теорема очевидна, если операции транспозиция подвергнуты два соседних числа перестановки. Пусть теперь между числами i и j находится s чисел. Для того, чтобы число j оказалось на месте i, его следует поменять местами с соседними s+1раз. А чтобы затем число i заняло место числа j его следует поменять местами с соседними s раз. Всего необходимо произвести операцию транспозиция над соседними числами s+1+s=2s+1нечетное число раз. Следовательно, четность перестановки изменится на противоположную. ■

 

Взаимно однозначное отображение множества из n элементов на себя называется подстановкой n-й степени. Подстановки принято записывать в следующем виде

Здесь мы работаем, как это часто делается в комбинаторике, не с самими элементами какого-либо множества, а с их номерами. В верхней строчке-числителе расположены элементы множества, а в нижней строчке-знаменателе расположены те элементы, в которые переходят соответствующие элементы числителя при отображении f,т.е. Конечно, элементы числителя могут быть расположены в ином порядке, чем естественный. Здесь подстановка записана в каноническом виде, когда порядок номеров в числителе естественный. И в числителе и в знаменателе подстановки стоят перестановки n-й степени. Если сумма инверсий в числителе и знаменателе четна, то подстановка называется четной, в противном случае нечетной. При любой замене местами столбцов подстановки ее четность не меняется. Для канонической записи подстановки



Множество всех подстановок n-й степени обозначается через . Число всех подстановок n-йстепени равно n!. Введем на множестве S операцию умножения – композицию отображений. Пример умножения подстановок:

 

Теорема. Множество всех подстановок n-й степени образует группу относительно операции композиции отображений.

Для доказательства необходимо проверить выполнение всех аксиом группы. ■

 

Нейтральным элементом является тождественное отображение

Обратным элементом для подстановки является подстановка

 



<== предыдущая лекция | следующая лекция ==>
Размещения, сочетания, перестановки | Определители


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.502 сек.